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This dissertation is concerned with the dynamic analysis of three-

dimensional elastic beams which experience large rotational and large de-

formational motions. To this end, the beam motion is modeled using an

inertial reference for the translational displacements and a body-fixed refer-

ence for the rotational quantities. Finite strain rod theories are then defined

in conjunction with the beam kinematic description which account for the

effects of stretching, bending, torsion, and transverse shear deformations.

A convected coordinate representation of the Cauchy stress tensor and a

conjugate strain definition is introduced to model the beam deformation.

Due to the inertial reference of the beam kinematics and the convected ref-

erence of the beam stresses, the present formulation is easily interfaced with

general multibody dynamics methodologies as well as software modules for

active control simulations.

The numerical treatment of the beam formulation is considered in

detail. A procedure to compute the beam internal force is derived from the

continuum formulation. The procedure is proven to be invariant to arbi-

trary rigid motions of the beam while accurately modeling the beam strain.

To treat the beam dynamics, a two-stage modification of the central differ-

ence algorithm is presented to integrate the translational coordinates and

the angular velocity vector. The angular orientation is then obtained from

the application of an implicit integration algorithm to the Euler parame-
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ter/angulax velocity kinematical relation. The combined developments of

the objective internal force computation with the dynamic solution proce-

dures result in the computational preservation of total energy for undamped

systems.

The present methodology is also extended to model the dynamics

of deployment/retrieval of the flexible members. A moving spatial grid

corresponding to the configuration of a deployed rigid beam is employed as

a reference for the dynamic variables. A transient integration scheme which

accurately accounts for the deforming spatial grid is derived from a space-

time finite element discretization of a Hamiltonian variational statement.

The computational results of this general deforming finite element beam

formulation axe compared to reported results for a planar inverse-spaghetti

problem.
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CHAPTERI

INTRODUCTION

The simulation of flexible multibody systemsis becomingan increas-

ingly important tool for the design and operation of many engineering ap-

plications. The interest in modeling the dynamics of multibody systems has

emerged in the distinct fields of space dynamics, mechanisms, and robotics.

Typical examples of these systems include elastic linkages, high precision

machine dynamics and robot manipulator arms, aircraft propellers, heli-

copter or turbine rotor blades, and flexible satellites and other types of

deployable space structures. The articulated structures are thus comprised

of flexible components which undergo large relative displacements and rota-

tions in order to carry out the intended operations. To perform the desired

kinematic motions, various types of mechanical joints are introduced to con-

strain the relative motion between the various components.

New technology needs of both the space and robotics industries have

increased the demand for accurate numerical simulations of the performance

of multibody systems. The design trend of newly developed mechanisms is

toward the use of very lightweight structural components. Likewise, equip-

ment performance requirements are being emphasized which dictate the high

speed operation and a greater positioning accuracy of these highly flexible

components. Under these circumstances, a significant coupling can be ex-

perienced between the gross rigid body motion and the elastic vibrations

of the mechanism. To accurately simulate this phenomenon and study the

effect of component flexibility on the overall system performance, a realistic
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mathematical model of the flexible components that can readily be incorpo-

rated into a general multibody dynamics methodology is necessary. To this

end, this dissertation addresses the computational analysis of the dynamics

of a flexible beam undergoing arbitrary spatial motions and experiencing

large elastic deformations.

The development of accurate methods to model the geometric non-

linearities of structural components has been the subject of numerous inves-

tigations. One approach considers the small elastic deformations of compo-

nents which undergo large overall rigid body motions. The two effects are

modeled separately by introducing a floating reference frame which follows

some overall mean rigid body motion of the beam; the elastic deformation of

the beam is then described relative to this moving reference frame [1-13]. In

this manner, computer codes for analysis of multi-rigid body systems were

extended to include structural flexibility by superposing existing linear de-

formation descriptions onto the rigid motions of the floating reference frame

[11-131 .

The resulting equations of motion of the above approach are in

terms of a set of reference coordinates representing the motion of the float-

ing reference frame and a set of relative elastic coordinates representing the

deformation. For structures consisting of a rigid main body to which flexi-

ble appendages are attached, the floating reference frame coincides with the

rotation of the main body [1-2]. For arbitrary configurations in which the

choice is not obvious, the floating reference frame is constructed to follow

some mean rigid motion of the flexible body such that the relative defor-

mation is minimized [3-6]. To determine this frame, constraint conditions

must be introduced to offset the additional unknown variables of the mov-
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ing reference;theseconstraints can be satisfied through a proper choiceof

deformation modes [3-4]. The construction of this mean axis system and

the appropriate deformation modeshas been presentedwithin the context

of general finite element"structural representations[7]. For multibody dy-

namics applications, the researcheffort hasbeentoward the construction of

elastic coordinateswhich accuratelyrepresentthe deformation of thesejoint-

dominated constrained systems[8-11]. The proper selectionof the floating

referenceframe and the consistent set of elastic coordinates is crucial to

the successof this approachas the componentcan deform only as dictated

by the selectedmodes. The accurate prediction of a proper representation

remains a difficult challengein the modeling of flexible multibody systems.

The initial floating frameapproachis limited by an inherent assump-

tion of linear deformation theory. However, the use of nonlinear theories

becomesnecessarywhen current spaceand robotics industry applications

are considereddue to the emphasistoward lightweight and highly flexible

components. Another instance mandating the useof nonlinear deformation

theories is the high speedrotation of a flexible component. In this case,the

rotation gives rise to centrifugal forceswhich affects the bending stiffnessin

a manner not predicted by the linear deformation theories[14-15]. For these

purposes, the initial approach was extended to model nonlinear effectsby

including nonlinear strain measures[16-17].

An alternative method basedon convected coordinate systems has

been developed to provide the capability of modeling large deformations

within the context of overall rigid body motions. Instead of modeling the

entire structural component with a 3ingle floating reference frame and an

appropriate set of deformational coordinates, this method employs finite
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element based deformational theories by introducing an element-attached

convected reference frame [18-23]. The convected reference frame is de-

fined to represent the overall rigid motion of the individual finite element.

Standard finite element methodologies are then incorporated to describe

the deformations with respect to the convected coordinate system. This

method was employed to model large deformations of beam elements using

updated or total Lagrangian formulations of large deformation continuum

mechanics [24-27]. A similar concept, termed the element-independent co-

rotational formulation, was introduced as a method for upgrading existing

finite elements to allow for large rotations [28-29]. In this method, rigid

body motions are extracted from the total element displacements prior to

computing element deformations. Another approach partitioned the compo-

nent into substructures such that linear elasticity theory referred to a local

frame was adequate to capture nonlinear effects [30].

Recently, a different approach has been adopted to describe the dy-

namics of a flexible beam which departs from the use of floating or convected

reference frames [31-36]. The approach introduces finite-deformation rod

theories from the outset such that the effects of both finite rotation kine-

matics and large deformations are taken into account [37-43]. The beam

kinematics are described with respect to the inertial reference frame such

that the motion due to rigid rotations of the beam is not distinguished from

that due to deforrr/ations. As such, the introduction of a moving frame as

a reference for elastic deformations is unnecessary. The advantage to this

is that a natural representation for dynamic systems results such that the

beam inertia is identical in form to that of rigid body dynamics. In addition,

large deformations are accurately represented as these formulations incorpo-
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rate strain measures modeling the combined effects of stretching, transverse

shear, torsion, and bending deformations. The resulting structure of the

equations of motion is simpler due to the use of the inertial frame kinematic

description as opposed to the floating frame or convected frame descriptions.

These latter approaches result in a complex coupling of the moving refer-

ence coordinates and the elastic deformation coordinates within the inertia

terms, whereas the former approach results in a greatly simplified inertia

operator. In exchange for this simplicity, a nonlinear internal force expres-

sion which is invariant to rigid body motions must be derived, as existing

linear deformation descriptions referenced with respect to a fixed coordinate

system become invalid for systems exhibiting large rotational motions.

The development of a computational procedure capable of real-time

simulations of space and robotic applications requires further research in-

volving both the model formulation and computational solution procedures.

To this end, the present work is focused on achieving effective and accurate

computational methods for the simulation of multibody systems in which

flexible components may be conceptualized as spatial beams. For a compu-

tationally effective formulation, an automatic derivation of the equations of

motion is necessary which includes a realistic modeling of the flexible mem-

bers and a streamlined incorporation of system constraints. Likewise, robust

and efficient time integration procedures which exploit inherent character-

istics of the formulation are required. Finally, it is desirable to be able to

incorporate additional analysis capabilities such as the deployment and/or

retrieval of the flexible member, active control and state estimation, ther-

mal and environmental effects, and other specialized fields into the present

formulation. As each of these computational elements are best formulated
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by specialists of the various fields, it is advantageous to conduct a modular

solution approach toward the software development rather than embedding

several analysis capabilities into a single monolithic program.

To this end, separate software modules have been developed which

are easily interfaced to form an attractive multibody dynamics simulation

package. First, a computer-oriented formulation of flexible spatial beams has

been developed to constitute an integral kernel of the multibody dynamics

methodology. The flexible beam model accounts for both finite rotations

and large deformations, and can be incorporated into general multibody

dynamics systems in a straightforward manner. The beam kinematics are

referenced directly to the inertial frame. As such, the equations of motion

for an arbitrary configuration of flexible beams and rigid bodies can auto-

matically be generated in terms of an identical set of physical coordinates.

The structure of the equations, aside from an expression for the nonlinear

internal force, is identical for both the rigid and flexible components. Nu-

merical strategies developed for the solution of equations representing spa-

tial kinematic systems are thus applicable for the entire flexible multibody

system. Such a unified treatment is not applicable for equations formulated

within the context of the floating frame approach. In this case, the reference

and elastic coordinate definitions are of highly different character and thus

require separate numerical treatment.

A multibody dynamics solution procedure, originally demonstrated

on rigid body systems in previous studies [44], has been adopted for the

present flexible multibody formulation. For multibody dynamics applica-

tions, time integration algorithms must include a proper treatment of three-

dimensional finite rotations and also a method to satisfy the kinematic con-
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straint conditions. In the present work, an attractive partitioned solution

procedure has been developedsuch that the generalized coordinates are

solved in a separate module from the constraint forces. The generalized

coordinate solution procedure is basedon the application of an improved

variation of the explicit central differencealgorithm to the translational co-

ordinates and the angular velocity. To update the configuration orientation

from the angular velocity, a separatenumerical procedurebasedon the Eu-

ler parameter representationof finite rotations is introduced. This overall

solution of the spatial dynamics is successfullyinterfaced with a separate

module which enforcesthe multibody system constraints. The constraint

force solver implicitly integrates a stabilized companion differential equa-

tion for Lagrangemultipliers.

The application of thesemultibody dynamics solution procedures

to systemsincluding spatial beam components relies on an accurate com-

putation of the beam internal force. As the degreesof freedom implicitly

contain information of both rigid motion and strain deformation, the inter-

hal force computation dependson a judicious procedure which filters out

the rigid body motions embeddedwithin thesevariables. For this purpose,

an objective strain increment/stress update procedure has been developed

which remains invariant to arbitrary rigid body motions occurring in finite

incrementsof time. The combineddevelopmentsof this internal force com-

putation with the multibody dynamicssolution proceduresresults in a com-

putational preservationof total energyfor undampedsystems. This distinct

feature of the presentwork will be demonstratedwith severalexamples.

Simulations of active control/vibration suppression or controlled

slewing maneuverscan easily be performed using the present beam for-
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mulation. This is due to the useof a convectedcoordinate representationof

the Cauchy stresstensor to describethe beam deformation. The physically

appealing description of stressas related to the surfaceof the deformedcon-

figuration has beenrecast into a coordinate system moving with the beam

in a manner which provides conceptual and computational simplifications

of the deformation representation. As such, the actual strains measuredby

sensorslocatedand operating on the deformedstructure correspondto those

with which the present multibody dynamics formulation is based. Control

software modules may thus be interfaced with the present multibody dy-

namic solution modules in a straightforward manner.

The present methodology is also extended to include the dynamics

of deployment and/or retrieval of the flexible members. Hamilton's law of

varying action is used to formulate the equations of motion for this three-

dimensional moving boundary value problem. A moving node referencefor

the beam dynamics is employedwithin the present formulation to account

for the changingspatial volume. The reference,which previously was fixed,

now correspondsto the configuration of a deployedbeam asif it wererigid.

A transient integration schemeis derivedfrom a space-timediscretization of

the Hamiltonian formulation, effectivelyaccounting for the changingspatial

reference.The methodologyis successfullyinterfaced with the internal force

computational procedure, thus retaining the large rotation/large deforma-

tion modeling capabilities of the present work. The formulation and the

computational procedure are then specializedto a planar inverse-spaghetti

problem for illustrative purposes.

The rest of the thesis is organized as follows. Necessarymathe-

matical preliminaries are presentedin Chapter II in deriving the equations
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of motion for a flexible spatial beam. The numerical treatment of a dis-

crete form of the equations is then considered in detail in the remaining

chapters. A computational procedure for the internal force is derived from

the continuum formulation in Chapter III. Special care has been taken to

achieve a computation which remains invariant to arbitrary finite rigid rota-

tions while accurately representing the strain of the beam. The formulation

is then extended into the multibody dynamics framework in Chapter IV.

The solution techniques for multibody systems, including the orientation

update procedure and the treatment of constraints, are presented in this

chapter. The combined effort of these techniques with the invariant inter-

nal force computation results in successful simulations of flexible multibody

dynamic systems as shown in several examples. The extension to model de-

ployment/retrieval dynamics of the beam member is presented in Chapter

V. The methodology developed to simulate the dynamics of the changing

spatial volume is presented in this chapter. Chapter VI then summarizes

the major contributions of this work.





CHAPTER II

FLEXIBLE BEAM DYNAMICS FORMULATION

2.1 Introduction

The formulation of the equations of motion for a flexible spatial

beam is presented in this chapter. The formulation accounts for the effects

of both finite rotations and large deformations of the beam component.

To model these geometric nonlinearities, a relevant description of the spa-

tial kinematics must be introduced. The equations of motion of the beam

as governed by the basic principles of continuum mechanics are then de-

rived from these kinematic definitions. A complete understanding of this

continuum formulation is necessary prior to the development of effective

computational techniques for a finite strain beam theory.

To formulate the equations, the beam kinematics are described with

reference to the inertial frame as in [31-36]. With this approach, the motion

due to rigid rotations of the beam is not distinguished from that due to de-

formations. The beam configuration is defined by a position vector locating

the centroid of a typical cross-section and an orthogonal matrix designating

the orientation of this cross-section, both of which are referenced to a fixed

inertial frame. As a consequence, the beam inertia operator is identical in

form to that of rigid body dynamics. This procedure fully departs from the

traditional approach discussed in the preceding chapter in which a floating

reference frame is introduced to separate the rigid body motions from the

elastic deformations.
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As the kinematics are referred to a fixed inertial coordinate system,

the presentformulation relieson the useof strain measureswhich are invari-

ant to rigid body motion. Applicable invariant strain measureswhich model

stretching, transverseshear, torsion, and bending deformations of rod-type

structures havebeendevelopedin the literature. The classicalKirchoff-Love

rod theory modeling large bending and torsion deformations was extended

to include stretching and transverseshear strains in [37]. Other formula-

tions derive similar rod theoriesfrom an appropriate versionof the principle

of virtual work [38-40]and from kinematical considerations including the

effect of warping which induces torsion-bending coupling [41-43]. The use

of these rod-type theories within dynamics problems involving large spa-

tial rotations was initiated in [31-33]and further pursued in [34-36]. These

and other works modeling the finite rotations and deformations of beam

componentsemploy the Piola-Kirchoff stressrepresentationsin which trac-

tion forcesacting on a deformedsurfaceelementare referencedback to the

undeformed configuration [24-27,31-36]. Although these formulations are

mathematically consistent, the stressestransmitted in the instantaneous

state are referred to the initial state in a way that is physically artificial

[45]. Transformations must then be made to relate the stressesback to the

actual deformedconfiguration. In addition, the useof the unsymmetric first

Piola-Kirchoff stress tensor as employedin [31-36]leads to complexities in

subsequentcomputations and linearizations.

A desirefor a beam formulation which caneasily be interfaced with

active feedbackcontrol schemeshasmotivated a more physically-basedin-

terpretation of the spatial beamformulations. To achievereal-time software

simulations, the computed deformation representationsmust correspond to
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the actual stress/strain measurements of the sensors located and operat-

ing on the deformed structure. For this purpose, the present formulation

employs the Cauchy stress and a corresponding strain tensor, which are

related to the true deformed beam configuration, to describe the elastic de-

formations. To implement this physical representation, a convected frame

which follows the rigid motion of the beam is introduced as the reference for

the Cauchy stress and corresponding strain components. Thus the present

formulation combines this convected reference for the stress representation

with the inertial reference for the beam dynamics. As such, the present

formulation is easily adapted within general multibody dynamics method-

ologies; this advantage will be illuminated in Chapter IV. The formulation

can also be readily extended to model the dynamics of deployment and re-

trieval of the beam as will be shown in Chapter V. The key to the success of

the present formulation within these applications is a procedure developed

for the computation of the internal force. This algorithmic development,

presented in Chapter III, guarantees that the physical stress representation

computationally remains invariant to arbitrary rigid-body motions.

The rest of this chapter is organized as follows. Section 2.2 will

detail the beam kinematics in which the total motion is referred directly to

the inertial reference frame. The description is compared to the kinematic

formalisms of the floating frame approach, thus illuminating advantages to

the former description. The equations of motion are formulated in Section

2.3 by specializing the principle of virtual work of a continuum solid to the

spatial beam kinematic assumptions. The convected frame decomposition

of the Cauchy stresses is introduced, and virtual strain-displacement rela-

tionships are identified from the virtual work expression. The convected
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coordinate stress/strain representation provides conceptual simplifications

in the derivation and subsequent computations of the internal force. To

complete the formulation, a constitutive law relating the convected frame

stress and strain rates is presented in Section 2.4. Consistent linearization

procedures employed to obtain linearized weak forms of the equations of

motion are then presented in Section 2.5. Using a natural continuum based

approach for the linearization procedure, the present formulation inherently

based on stresses referred to a deformed configuration results in symmetric

tangent matrices. A summary of the present formulation is then given in

Section 2.6.

2.2 Large Rotation Beam Kinematics

The inherent difference of the floating frame approach and the in-

ertial reference approach to describe the dynamics of spatial beams is il-

luminated as follows. As stated in Chapter I, the floating frame approach

introduces a reference frame to follow an overall mean rigid-body motion of

the beam; the elastic deformations of the beam are then described relative

to this moving reference. In this manner the motion due to the rigid rota-

tion of the beam is separated from the local deformation of the beam. The

position vector describing the location of an arbitrary particle point on the

beam from the inertial origin, as shown below in Figure 2.1, is given by

r = Z T e + ( X + uf )T f (2.2.1)

The following notation is introduced in (2.2.1) to describe these kinematics:

e = { el,e2,e3 }T represents the orthogonal basis vectors of the inertial

reference frame; f = { fl, f2, f3 }T represents the orthogonal basis vectors
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e3
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fl

Figure 2.1 Spatial Beam Kinematics: Floating Frame Approach

of floating reference frame; Z T = { Zl, Z2, Z3 } represents the inertial com-

ponents of the origin of this moving reference frame; X = { X1, X2, X3 }T

represents the moving frame components of the undeformed beam position,

and u I = _ uf_,uf2,uf 3 }T represents the moving frame components of

the relative deformational displacement of the beam from the undeformed

position. The terms z T e and X T f represent the rigid-body motion of the

beam, while the terms u_ f represent the small deformational displacements

relative to the rigid-body reference frame.

The 3 x 3 orthogonal transformation matrix A is introduced to orient

the f-basis from the e-basis as f = A e. The angular velocity of the moving



frame is thus given by [47-48]

dA AT & -
= - d--Y '

15

0 _oJ 3 _2

w3 0 -wl

-w2 wl 0

(2.2.2)

in which the tensor components are referred to the moving basis and the no-

tation [" ] represents skew-symmetric matrices. A conjugate virtual rotation

tensor is defined analogous to the angular velocity tensor as

_ = -_AA T (2.2.3)

The time differentiation of (2.2.1) is obtained from the well known formula

applicable for rotating coordinate systems [47]

d d e d b

dt - dt dt + o., x (2.2.4)

in which w is the angular velocity vector and the superscripts e and b indicate

that the derivatives are to be those observed in the inertial and moving

system of axes respectively. The above relation is expressed in the following

matrix form as

d d b
- + & (2.2.5)

dt dt

which acts on the moving frame components of a given vector. The velocity,

acceleration, and variation of the position vector (2.2.1) are thus given as

"-zTe "4- _T f + ( xT.4_uT )_y f

__ _ T e -t- fiT f + 2 it T &y f + ( X T 2t- tt T )

-: T xT uT
wf f + ( + )&y&yf (2.2.6b)

6r = _z T e + 6u T f + ( X T +ttT ) _T f (2.2.6c)

(2.2.6a)

The major drawback of the floating frame approach is immediately seen

in the above acceleration expression. The terms ti t and uf representing
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the elastic deformations are coupled with the terms w! and &l representing

the angular velocity and acceleration of the floating reference frame. This

coupling between the rigid body motion and the elastic deformation requires

the development of specialized numerical procedures for the solution of the

equations of motion formulated from this kinematic description.

The present formulation adopts an inertial reference frame for de-

scribing the translational motions and a body-fixed reference frame for de-

scribing the rotational motions. The consequence of this description is that

the translational and rotational variables embody information due to both

rigid-body motions and deformations of the beam. The configuration of

the beam is completely characterized using a position vector locating the

neutral axis of the beam from the inertial origin and a body-fixed reference

frame representing the orientation of the cross-section with respect to the

inertial reference frame. The position vector describing the location of an

arbitrary particle point on the beam from the inertial origin, as shown below

in Figure 9..2, is given by

r -_ ( X _- u )T e -[- t T b (2.9.7)

In the above equation, the notation e = { el,e2, e3 }T represents the or-

thogonal basis vectors of the inertial reference frame; b =" { bl, b2, b3 }T

represents the orthogonal basis vectors of the body-fixed reference frame

attached to the beam cross section; X = { X1,X2,X3 }T represents the

inertial components of the original neutral axis position; u = { ul, u2, u3 }T

represents the inertial components of the subsequent total translational dis-

placement of the neutral axis, and _T ._ { 0, _2, _3 } represents the body-

fixed components of the distance from the beam neutral-axis to the ma-
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Figure 2.2 Spatial Beam Kinematics: Nonlinear Continuum Approach

terial point located on the deformed beam cross-section. Thus the total

large rotation motions are modeled by a combination of the translational

displacements u and the moving reference frame b. It is noted that the

beam cross-section is allowed to rotate with respect to the neutral axis of

the beam. In this manner, transverse shear deformations are modeled as the

orientation of the beam cross-section is not necessarily perpendicular to the

beam neutral axis. Warping deformation of the cross-section is not taken

into consideration in the present formulation.

The orientation of the body-fixed reference frame is expressed with



18

respect to the inertial reference frame as

b = R e (2.2.8)

where R is a 3 x 3 orthogonal transformation matrix. The body frame

components of the angular velocity tensor and the virtual rotation tensor of

the cross-section orientation are given by

= -d-TdR RT , 65 = -6RR T , (2.2.9)

respectively. The velocity, acceleration, and variation of (2.2.7) are thus

dr du T
-- e + e.T&Tb (2.2.10a)

dt dt

cl2r d2u T db_ T

dt 2 - dt 2 e + eT( d--'-_ + &T&T) b (2.2.10b)

6r = _uTe + eT_(xTb (2.2.10c)

It is seen in this acceleration expression, in contrast to (2.2.6b), that the

translational displacements of the neutral axis are completely decoupled

from the angular orientations of the cross-section. The acceleration is of

the same form as in the Euler equations for rigid body motion. This leads

to an effective partitioned numerical solution procedure which is equally

applicable to both rigid and flexible components of a multibody system.

The derivation of the equations of motion are discussed next. The numerical

techniques for the solution of these equations of motion are discussed in

Chapter IV.

2.3 Nonlinear Equations of Motion

The conditions for the equilibrium of a solid continuum are given

by Cauchy's equations of motion. These differential equation of motions are
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stated as [45-46]

Oa i
+ P(I -

= 0

to be satisfied through the interior of the continuum V subject to displace-

ment and traction boundary conditions

xi -- Xi on Su , ti = ajin j on Sa

on the respective displacement and traction surfaces Su , So. The Cartesian

coordinates xi represent the particle position after the deformation, vi the

particle velocity, fi the external force per unit mass, and p the mass per unit

volume. Likewise, a_j represents the Cartesian components of the Cauchy

stress tensor and ti the stress vector acting on a surface with outward normal

components hi.

The weak or variational form of Cauchy's differential equations

are employed to deduce a conjugate set of Cauchy stress/virtual strain-

displacement relations as well as to provide a basis for the displacement

based finite element method. The variational form of Cauchy's equations is

the principle of virtual work given as [45]

¢5ri Pri dV + a_j Ox---7.dV =

f

_Srifi dV + ./¢ ¢Sriti dS

(2.3.1)

The Cartesian coordinates 6ri represent a kinematically admissible vir-

tual displacement. This virtual work expression is tailored to the contin-

uum beam by incorporating the kinematic relations (2.2.7), (2.2.10b), and

(2.2.10c) for the components xi, /_i, and 6ri, respectively. For notational
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convenienceand subsequentfinite element discretization, the principle of

virtual work is expressed in the foUowing operator form:

6F z + 6F s = 6F E 4- 6F T (2.3.2)

where the inertia operator 6F I, internal force operator 6F s, external force

operator 6F E, and traction operator 6F T are identified from (2.3.1). Ex-

plicit expressions for the various operators are given in the following Sections

2.3.1 to 2.3.3.

2.3.1 Inertia Operator

The inertia operator defined in (2.3.1)

6FZ - Iv p6r, i_,dV = Iv p6r._dV (2.3.3)

is tailored to the present problem with the kinematic equations (2.2.10).

The following simple expression results for 6F I if the origin of the body-

fixed basis is located at the centroid of the cross-section:

m -_r ds (2.3.4)5F I { 5u T 5_ T } j _ +

where

m = /A pdA , J = /A p_TdA

represents the area and inertia properties of the beam cross-section and s

represents a length parameter to be taken along the beam neutral axis. It is

seen that the translational inertia is completely decoupled from the rotary

inertia and is of the same form as the classic Euler equations of rigid body

dynamics. This is due to the dual choice of the translational displacements

measured in the inertial basis and the angular velocity measured in the

body-fixed basis located at the center of mass of the cross-section.



2.3.2 Internal Force Operator

The internal force operator is defined from (2.3.1) as

21

Iv 6ris = dV (2.3.5)

identifying as conjugate quantities the virtual displacement gradient and

the Cauchy stress tensor. An explicit expression for the internal force is

then derived from the beam kinematics (2.2.10). A set of virtual strain-

displacement relations that are invariant to rigid body motions are deduced

from this virtual work expression as in [38-40]. To complete the formulation,

a suitable constitutive relation is chosen to relate the strain rates, which are

of identical form as the virtual strain relations, to an appropriate stress

rate tensor. An objective incremental procedure is then derived from this

rate-type constitutive law.

To provide conceptual simplifications in the derivation and subse-

quent computations, the Cauchy stress tensor and the virtual strain tensor

are decomposed with respect to an alternative beam reference frame which

lies tangent to the deformed neutral axis. The virtual strain tensor contains

three independent, non-zero components when referenced to this convected

coordinate system. In addition, the task of stress update is accomplished

with a much simpler computation when convected frame as opposed to in-

ertial frame stress components are considered. When inertial frame compo-

nents are employed within problems exhibiting large rigid body motions, an

appropriate nonlinear constitutive relation is required to obtain an objective

stress update from strain measures. When expressed using convected frame

stress and strain tensor components, the constitutive law leads to a simple

additive update procedure.
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Figure 2.3 Spatial Beam Kinematics: Convected Reference Frame

For this purpose, we introduce a convected reference frame which

lies tangent to the deformed neutral axis. The convected reference frame

a = { al,a2,a3 }T, as shown above in Figure 2.3, is related to the inertial

reference frame e by a = T e . For present implementation purposes

within the context of a constant-strain finite element, the convected frame

will be approximated as a straight line connecting the two element nodes.

As such, the reference frame is constant on the element level and is simi-

lar in concept to that introduced in [19-20]. It is noted that this reference

frame does not coincide with the body frame b attached to the cross-section.

The relative difference between these two frames is represented by the to-
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tation matrix S which models the effects of transverse shear and torsion

deformationsas

b = S a , R = ST (2.3.6)

As will be shown, the interdependence between R, S, and T plays a key

role in the algorithmic implementation of the present formulation.

The internal force operator, originally characterized by inertial

frame components of the Cauchy stress tensor a_y and conjugate virtual

displacement gradient, can equivalently be expressed in terms of the con-

vected frame stress tensor components a_y and a corresponding convected

virtual displacement gradient. As the rotational tensor Tij maps the in-

ertial coordinates xi to the convected coordinates _i, the following tensor

transformations

0 0

Oz I -- Tkl i)_k a{_ = Tk{ a_t Ttj (2.3.7)

are incorporated into (2.3.5) to yield

fV O_ri6F s = Tmi O_---_a_'k dV (2.3.8)

The virtual strain tensor &_nk is defined from the symmetric portion

of the transformed deformation gradients as

I 06r i C96r i

&_k : 2 (Tmi c3_k + Tk, m-0__ ) (2.3.9)

The virtual strain definition (2.3.9) vanishes during a rigid body rotation.

As the virtual displacements of a rigid-body rotation are 6r = 6&r, the

Virtual deformation gradient reduces to the skew-symmetric matrix 66 in

this instance. As such, the symmetric virtual strain definition (2.3.9) is
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invariant to rigid body motions and is thus classified as an objective rate-

type tensor.

Due to the symmetry of the Cauchy stress tensor, the virtual work

of the internal force is given as

6FS fv a a dV (2.3.10)_grnk O'rnk

This expression is rewritten in the following vector product format as

6FS = [ { a_ S_, S6¢ } 6F._n dV (2.3.11)
dv

6e_c

In the above equation, the notations

_i = { _1,_2,_3} = { _,_,C } , (')ii = (),J + ()J_

denote the coordinates of the convected reference frame and the engineering

shear strain definitions respectively. The remaining convected frame strain

components 6e,n , 6eCC , 6e',7¢ are identically equal to zero due to the orig-

inal assumptions of the beam kinematics. From (2.3.9), the three non-zero

virtual strain components are given as

06ri (2.3.12a)
_e_ = TI_ 0-T

6_'_ = T2i 06rio.____+ Tli 06ri077 (2.3.12b)

06ri 06ri (2.3.12c)
6_¢ = T3i O'-T + Tli Off

The above definitions are rewritten terms of the virtual translations and

virtual rotations by performing the parametric differentiation of the vari-

ation of the position vector (2.2.10c) with respect to the convected frame

coordinates. As the convected reference frame has been constructed to be
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constant over the element domain where the differentiation is performed, it

becomes convenient to express the variation of the position vector as

6r = _ure + 6_T_a

= ( 6ur + 6__ _ T ) _ (2.3.13)

In the above equation, the components _5 and £. axe defined as

_fl = S T _ct , _.a = S T _. = (2.3.14)

to represent convected frame decompositions of the cross-section virtual

rotation vector and material position coordinates. The variation (2.3.13) is

differentiated with respect to the neutral-axis coordinate _ to give

0 6r (9 _U T C_ _fl T

c9_ - ( 0_ + 0_ g_r) e (2.3.15)

where the approximation

0 Q
_- 0

0_

is employed as the change in the neutral-axis coordinate of the total position

due to a small rotation of the cross-section about the neutral axis is negligi-

ble. Likewise, the differentiation of (2.3.13) with respect to the coordinates

perpendicular to the neutral-axis yields

0 _r
= _flT z2 T e (2.3.16)

07

0 6r
_ _T _3 T e (2.3.17)

o¢

where _2 and _3 are given by

$2 _--"

0 0 1

0 0 0

-I 0 0

o&
0,7
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Z3 o_1i]1 o - a¢
0 0

It is noted that in the above derivations the assumptions intrinsic to the

beam formulation in which the virtual translations 6u and virtual rotations

6_ are independent of the cross-section variables rI and _ have been effected.

Substitutions of the derivatives (2.3.15), (2.3.16), and (2.3.17) into (2.3.12)

yield the expression

where

{ e_e ) 0 6u

Z1

0 0 0

0 0 -1

0 1 0

(2.3.1s)

The above equation (2.3.18) is rewritten as

{ 6e_e )
= 6"7 + _r 6_ (2.3.19)

where 6V represents the membrane and two transverse shear virtual strains

and 6_ represents the torsion and two bending virtual strains. The defini-

tions

l0}67 = T 0-'_-- ÷ -6,5'3 (2.3.20)

6_ = 0 6_ (2.3.21)
0_

are a convected coordinate representation of the virtual strains derived in

[39-40].

To determine the stress state, it remains to introduce an appropriate

constitutive law. A rate-type constitutive law, as discussed in Section 2.4,
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The resulting stress state, as derived in theis employed for this purpose.

following section, is written in form similar to (2.3.19) as

a¢_ = a.y + _ra,_ (2.3.22)

where a.y represents the membrane and two transverse shear stresses and

a,_ represents the torsion and two bending stresses. From this result, the

virtual work of the internal force can be written as

6F s = f_ { 67 T N, + &cT M_ } d_ (2.3.23)

by substituting (2.3.22) and (2.3.19) into (2.3.11) and integrating over the

area coordinates of a symmetric cross section. In the above equation, N. r

represents the axial and transverse shear forces per unit length, and Ms

represents the torsional and bending moments per unit length as

N, = /A a dA , M, = /A e a dA (2.3.24)

It is necessary to rewrite (2.3.23) in a manner consistent with the

inertia operator (2.3.4) as

6FS = _ { 6uT 6aT} [ B ]T { N'r } d_M. (2.3.25)

To identify the proper strain-displacement matrix [ B ], a transformation

of the virtual strains back to the body frame components of the virtual

rotations is required. To effect the change of the body reference frame of

the cross-section orientation in space with respect to the constant convected

reference frame, we invoke the following relations

Oa_ _. sT Oa_o:

0_ 0_ (2.3.26)

0b_a 0as S T
= sT( 0_ + ks6a) , kT = 0_ (2.3.27)
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which are completely analogousto the time derivatives of rotating coordi-

nates. The strain operator [ B ] is then identified as

]0' (2.3.28)
0 + I n)

To complete the internal force definition, it remains to provide a procedure

for updating a. r and a_ in order to compute N_ and M_. This is accom-

plished via the numerical integration of an appropriate rate-type constitutive

law to be discussed shortly in Section 2.4.

2.3.3 External Force and Traction Operator

The external force operator defined in (2.3.1) as

6FE = fv 6ri fi dV

has the final resultant form

6FE =. _ { 6uT 6aT } { fe
d_ (2.3.29)

where f* represents the inertial components of a force per unit length acting

on the beam neutral axis and f_ represents the body-fixed components of

a moment per unit length acting on the beam cross-section. The traction

operator defined as

5FT = Is 6ri t, dS (2.3.30)

acts on the exterior surfaces of the beam as natural boundary conditions.

2.4 Constitutive Equations

To complete the description of the nonlinear continuum problem,

the derivation of a stress-state from an applicable constitutive equation is

necessary. The classical elastic constitutive equations applicable within the
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finite deformation context relates the second Piola-Kirchhoff stress compo-

nents to a linear combination of the Lagrangian finite strain components

within a generalized Hooke's Law [45]. This type of deformation description

is based on a direct comparison of the the current shape of the continuum

back to its original reference configuration. Such a formulation thus asserts

that regardless of the extent of the deformation, the material response of the

continuum is based solely from the unstressed state without any reference

to the history of the deformation. A more natural concept is based on the

idea that an increment of stress is a function of the increment of strain from

an immediately preceding state [49]. The constitutive law which mathemat-

ically generalizes this concept relates the instantaneous rate of stress to the

instantaneous rate of deformation. This concept is adopted in the present

beam formulation.

When stress and strain rates are used with a constitutive law, the

property of objectivity must be taken into consideration. The principle of

objectivity requires that intrinsic physical properties of a body be inde-

pendent of the body's orientation in space. This principle is embodied in

constitutive theory by requiring that constitutive equations contain only ob-

jective tensor fields. Tensors defined from the material coordinates of the

undeformed continuum such as the Piola-Kirchoff stress tensors automati-

cally possess this property as do time independent tensors. However, the

time derivative of the Cauchy stress tensor is not objective, and an alter-

nate rate definition other than the time derivative must be used within a

constitutive law based on Cauchy stress rates.

One objective stress rate constructed from the Cauchy stress tensor
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is the Truesdell stress rate tensor akt defined as

&_,i = a_,l - a_,,,, v _ - v _ , (2.4.1)

and an objective constitutive law incorporating this definition is

O'_:l = Cijkl _ek I (2.4.2)

The notation

'," ox,,, ' _" o_, + o_,,' '

represents the velocity gradient tensor and the symmetric part of the ve-

locity gradient respectively, and ciikt is the spatial transformation of the

material response tensor CASED to be defined shortly. Similar objective

stress rates, as the Jauman stress rate tensor, may also be employed within

objective constitutive laws. In the present formulation, the Truesdell rate

equation is chosen as it leads to symmetric tangent stiffness matrices within

the linearization procedure dicussed in Section 2.5.

For computational convenience, the Truesdell constitutive equation

(2.4.2) is rearranged as

where

Cijkl

&_.i + o'_, wkj - wik aj..j = ¢,jkle_t (2.4.3)

1

= cijk, - 6ktaii + _ (6ilaik + ,Sjtaik + 8ika i' + ,Sjkait ) (2.4.4)

-. 1 Oizk Oat

_'_' = _ ( ox, oz,, ) (2.4.5)

corresponds to a stress-dependent constitutive tensor and
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correspondsto the skew-symmetricspin tensor. This form (2.4.3) is con-

ducive for the developmentof a computational procedureto update a given

stressstate. Any stressrate defined from a skewsymmetric tensor as

if<W> _ dr 3 t- tY_ -- _tT , _ -- W W T

is automatically objective. It is easily shown that when this stress rate

is transformed to the basis defined by the orthogonal rotation tensor W

characterizing _ as

_<ww> --- wr(dr + o_ - fi_)w ,

it is precisely the time derivative of the stress tensor also transformed to the

W basis as

a<w> d WT a,= d-7( w) -- drw

The transformed stress rate tensor can then be directly integrated as

tn+la_ ,+l = a_v + (Ci)w dt (2.4.6)
Jtn

where the right hand side of the constitutive equation is also transformed

to the W basis. The above equation is accurately approximated with a

midpoint integration rule as [50]

_,+' = _v + C Z_w (2.4.7)

where the increment ACw is strictly due to deformation and calculated at

time t"+ ½.

This stress update procedure, as applied to the Truesdell rate defi-

nition, requires that the stress and strain tensors originally referred to the
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inertial basisbe transformed to a basisrotating with the spin tensor. This

basis must be calculated from its generating differential equation

V¢ = ,

and for this purpose algorithms have been developed which computationally

remain objective [51-53]. However, this additional complexity is bypassed

within the present beam formulation. The update procedure (2.4.7) can be

directly applied to the convected frame tensor components of the Cauchy

stresses and strains without the need for further transformations. This is

shown as follows by expressing the the Truesdell rate equation (2.4.3) with

convected frame tensor components as opposed to inertial frame compo-

nents.

To derive the appropriate constitutive law for the present beam

formulation, the origin of the Truesdell rate equation is first examined. The

Truesdell rate equation is based on the classical hyper-elastic constitutive

equations [45]

D

D--t ( SKL ) = SAB = CABCD .ECD (2.4.8)

where SAB is the second Piola-Kirchhoff stress tensor, EGO is the Lagrange

strain tensor and CABCD is a material response tensor derived from a pre-

scribed elastic strain energy function. The second Piola-Kirchhoff stress

tensor is related to the Cauchy stress tensor a_i by

SAB = j XA,i O'ej XB,i , (2.4.9)

and the Lagrange strain tensor is defined as

1

EAS = "_ (Zi,AZi,S - 5AS )
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In the aboveequations,the componentsXz denote the material coordinates

of the undeformed configuration, zi the spatial coordinates of the deformed

configuration, and

OXi OXA

Xi,A -- OX A , j = det( Xi,A ) , XA,i -- Ox i

denote the deformation gradient, its determinant, and its inverse, respec-

tively. The material time derivative of the second Piola-Kirchoff stress tensor

and the Truesdell rate of the Cauchy stress tensor are related in the same

manner as the stress tensors themselves (see, e.g. [461) as

D

D-'t ( SKL ) = j Xg, k XL,, ( b_,: ) (2.4.10)

The Truesdell rate equation is derived by transforming (2.4.8) to spatial

coordinates as

j XA,k XB,I ( _! ) "- CABCD Xi,C Xj,D _i_ ,

and after further manipulation (2.4.2) results with the definition

1
Cijki = "7 Xi,A X j, B Xk, C Xl, D CABCD

J

In the same manner, a constitutive relation suitable for the present

beam formulation which incorporates the convected frame decomposition of

the Cauchy stresses is derived. The following relationship similar to (2.4.9)

OXK OXL
SKL = j 0 "a

Pq O_p O_q (2.4.11)

is defined by transforming the spatial coordinates from the inertial basis

to the convected basis. The convected frame interpretation of the Truesdell
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stressrate is derived by taking the material time derivative of the right-hand

side of (2.4.11) to yield

D

D""t ( SKL )
oxK oxL ( _, ) ,

= J c9_k c9_l

and the objective convected coordinate stress rate tensor becomes

(2.4.12)

~" Z

-- ailvkd -- akivli + akzv_n,,. . + a'_t_Sik + cr_ifliZ. (2.4.13)

In the above equation, the notation

_ Oi_p

denotes the transformed velocity gradient tensor and the angular velocity

tensor of the convected reference frame respectively.

is then derived as

where

The constitutive law

5'_j = ci.ik, e_l (2.4.14)

1 (TrekOak 0_k

is the symmetric part of the velocity gradient tensor analogous to (2.3.9).

The constitutive law is rewritten in terms of skew-symmetric tensors as

_,_,+ _, ( 7,,, - _,, ) - ( z,k, - A, ) _

= ( ck,.,_ + _,.._ ) _,_ (2.4.15)

where

~ 1 (T, nk cOiz, Tpk Oitk



35

is the skew-symmetric part of the transformed velocity gradient tensor. It

is noted that the skew symmetric tensor of the above constitutive law rep-

resents the difference between the convected frame spin tensor and the con-

vected frame angular velocity vector. It can be shown that this difference

is approximately the order of magnitude of the incremental rotations of the

shear S rotation matrix. Under the assumption of small shear strains, this

skew tensor can be neglected, and the constitutive equation reduces to

&_t --_ C'ktmp _p (2.4.16)

This equation can then be integrated directly without requiring a transfor-

mation of basis as

an+l

_,, = _,_" + Ck_mp_,p (2.4.17)

to define the stress update procedure.

The above expression (2.4.17) is then written in terms of the relevant

convected frame stress components as

{}n l{}n { }
The constitutive matrix is subsequently given as

Cl111 Cl112 Cl113
01211 01212 01213
¢1311 C1312 ¢1313

1 I

= Diag ( E + cr_ , G + _o'_ , G + _ )

(2.4.18)

by specializing the definition (2.4.4) to the tensor components representative

of the beam formulation. Alternative stress-dependent constitutive laws,



as for inelastic material behavior, may also be implemented.

componentsare then written as

a = a ° + _2 at2 + _a J3 ,

illuminating the dependency on the cross-sectional variables ei o

36

The stress

(2.4.19)

This de-

pendency is immediately seen from (2.4.18) due to the incremental strains

which will be of the same form as the virtual strains (2.3.19). Likewise, the

stress dependent constitutive matrix is decomposed as

= C ° + _2 _t2 + gs _t_ (2.4.20)

where

Co = ¢ ( oo) , ¢t2 = ¢ ( or. ) , ¢t3 = ¢ ( o. )

are defined from the appropriate stress components of (2.4.19). By combin-

ing the above with the following incremental analog to the virtual strains

(2.3.19)

Ae = &7 + FA_ ,

the stress update thus takes the form

0.0 n+l .- 0.0 n

fit2 n+l -- fit2 n

Gta n+l ._ O.t3 n + Aorta

where

Aa0 = (2o A7

Aat2 = (_t2 A7
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The evaluation of the strain increments /x 7 and /X_ will be detailed in

Chapter III. The stress resultant forces and moments per unit length N and

M defined in (2.3.24) are now given in a more explicit form as

/ /= A Ms

N3 a_. A , M3

*'/3 - t312}
¢2

2.5 Consistent Linearization

The derivation of the equations representing the spatial motion of

a flexible beam is thus concluded. Inherent in these equations is an inertia

force containing a nonlinear rotary acceleration, and a nonlinear internal

force expression. To achieve numerical solutions to both static and dynamic

problems, it is necessary to work with a linearized set of equations repre-

senting the best linear approximation of the nonlinear equations within a

small neighborhood of some equilibrium configuration. The term consistent

linearization refers to a process of achieving this approximation in a manner

that retains the inherent properties of the formulation. Consistent lineariza-

tion techniques which account for the effect of finite rotations in deriving

tangent stiffness matrices have been presented for nonlinear beam formula-

tions [25-27,31-36,54]. In what follows, an intuitive approach is presented

to linearize the inertia and internal force terms.

To this end, the displacements and rotations which inherently define

the nonlinear functions are represented as a linear perturbation about a

known equilibrium state. An incremental displacement Ax represents the

linear portion of any possible perturbation of a known displacement x '_ and
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to an alternative displacementx as

x _- x" + Ax (2.5.1)

The equivalent concept which gives the linear portion of any possible ex-

cursion between a known orientation represented by the orthogonal rotation

matrix R n and an alternative rotation R is given as

R "2_ R n + AR (2.5.2)

= R n + AdTR " (2.5.3)

The definition AR = A_ T R n is analagous to the virtual rotation defini-

tion 6R -- _T 1:_ Of (2.2.9); the components of A_ T represent infinitesimal

angles of rotation about the basis vectors of R '_ moving the reference frame

from an unperturbed to a perturbed position [4]. The form of the linearized

rotation has also been derived using the Frechet derivative concept in [31,34].

2.5.1 Tangent Mass

To obtain the linear portion of the inertia force

5FI = _ { 5uT 5o_T } { MmMj } d_ (2.5.4)

M,,, = pA (2.5.5)

Mj = J& + & Y¢v , (2.5.6)

linear perturbations of the translational and rotational acceleration must be

derived. The former is given as

/i _ /2" + Au (2.5.7)
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Mm "" M_ + pA Au (2.5.8)

The latter will be obtained from linear expansions of the angular veloc-

ity and acceleration in terms of the rotational perturbations about a given

orientation. For this purpose, (2.5.3) is employed to give

c5 = --I_.R T

d

_- dt [(I + A& T) R"] R "T (I + A&) (2.5.9)

By expanding the above and retaining terms to firstorder in the rotational

perturbation, the consistent approximation of the angular velocity tensor

becomes

_, = _" + /x& + ,.,:,-ix& _ A&_" (2.5.10)

The vector dual to the above skew-symmetric tensor is given as

w _ w" + A& + _"/ko_ (2.5.11)

Linearization of the angular acceleration is derived in the same manner from

the definition

= -RR T - R R r ,

and the result is given in vector form as

d, __ d," + & + _"Ao_ + &"A& (2.5.12)

From (2.5.11) and (2.5.12), the linear expansion of the rotational accelera-

tion can then be derived as

Mj __ M_ + J A(9 + C a A(9 + KcAo (2.5.13)
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where C a and K C represent gyroscopic damping and centrifugal stiffening

matrices respectively given by

C a = _"J-

K c = &"J&"

N

Jw" + j&n (2.5.14)

-(s_--_)_-j+ j_ (2..5.15)

2.5.2 Tangent Stiffness

To obtain the linear portion of the internal force

f T 06ri
_Fs = dv mi_('[ _k dV , (2.5.16)

linear perturbations of the convected frame transformation matrix, the spa-

tial derivatives, the stress state, and the deformed volume from a given de-

formed position must be derived. The perturbation of the rotational tensor

Tii representing the convected reference frame is given as

Tij "_ ( ,Sik - A3ik ) Tkj" (2.5.17)

where A/3ik are defined as linearized rotation increments of the convected

reference frame. To obtain a linear perturbation of the spatial derivative,

(2.5.1) is employed to give

Oxi 0____2.
axe. - ( 6_ + o z_" )

This is then inverted as

(2.5.18)

Oz i" OAz._._A
Oxs _- ( 5ij -0 xj" ) (2.5.19)

as the displacement increments Axi are assumed to be small. The spatial

derivative can thus be approximated as

0 _ Oxj '_ 0

Oxi Ozi Ozj"

OAzi O
(2.5.20)
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= ( 6i, - a_,, )T_ ( _,_ O_xp0__?) Oxp.0 (2.5.21)

by incorporating (2.5.17) and (2.5.20). The final approximation is given as

0 0Azp 0 .

by transforming (2.5.21) back to convected coordinates and retaining all

terms to first order. A consistent perturbation of the deformed volume is

obtained in a similar manner as

dV

OAXs

= (1 + T,n: 07"--_")dV"¢m'"
(2.5.23)

A consistent perturbation to the Cauchy stress state is defined from the

constitutive law (2.4.13) and (2.4.14) as

6raj O.ij a"" + Aaij a (2.5.24)

The proper stress increment is deduced from the time derivative of the con-

vected Cauchy stress components. This is obtained by rearranging (2.4.14)

and conceptualizing ( " =_ A ) to give
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The linear perturbation of the internal force can be identified by

substituting the approximations (2.5.17, 2.5.22 - 2.5.24) into (2.5.16). After

an extensive set of calculations with some convenient algebraic cancellations,

the result becomes

6F s _ 6F sN +

f_ 06ziTki O_t

This is further simplified as

6F s _,_

5K M

OAx, O*z, OAz,

-- ck,mp T,_, O_p + n, 0_---_-a_, n, O_-----ffdv

6F s_ + 6K M + _K G (2.5.26)

f,, $e_,zcktmp /x_,p dv (2.5.27)

f_ 06xi _ OAx_= 6, (2.5.28)

in which the material tangent stiffness operator 6K M and the the geometric

tangent stiffness operator 6K c have been identified.

Explicit expressions for the material and geometric tangent stiffness

operators are given as follows. The material stiffness is simply

'KM "- _ { SuT _aT } BT c B {Au}d_Aa (2.5.29)

where B is the strain-displacement operator defined in (2.3.28) and

C = Diag ( EA, GA, GA, G J, EI2, EIa )

is the elastic constitutive matrix incorporating the area integration through

the cross-section variables. To obtain the geometric tangent stiffness,

(2.5.28) is written in terms of the relevant components as

06r OAr 06r OAr c96r OAr

/ 06r OAr 06r OAr

o¢ + o-( o-7-) (2.5.30)
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The expressions(2.3.15- 2.3.17)aswell as (2.4.19)are then substituted into

aboveand the integration through the cross-sectionalareaisperformed. The

result becomes

6K a
06u T OAu= _-_ gz c9_ +

06u-----_TT T M* OA#
a_ a_

C')6#TM* T T cgA.__..._u
a_ a_

o_#T
a_

ag#T
a¢

06U T

+ -- T T N* Aft -b

.__ _#T N ,T T OAu-- +
a(

aa#

o'A# + 6#TO *_ OA#
a_

d_ (2.5.31)

where the stress dependent matrices introduced in the above are given as

_

0 N3 -N_
-N3 o o
N: 0 0

S

o M2 M3
-M_ o o
-M3 0 0

:_

t, t_ I2 0 0 "]a_, 7 /3 + a_¢

0 0"4¢ I2 --cr_ 32

Finally, the convected frame virtual rotations 6# and their spatial derivatives

are transformed back to the cross-section reference frame via (2.3.26) or

(2.3.27). The tangent stiffness matrices/(M and/(a can thus be identified

from the above derivations such that the linearized internal force is given as

[K a + K M ] Au

(2.5.32)
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2.7 Concluding Remarks

A formulation for the dynamics of flexible beams that admits the

effects of large rigid-body motions as well as large deformations has been

presented. The present formulation adopts an inertial reference frame for de-

scribing the translational motions and a body-fixed frame for the rotational

motions. As such, the beam inertia operator is identical in form to that of

rigid body dynamics and the formulation is easily adapted into the method-

ologies of general multibody dynamics. To effect the kinematic description,

nonlinear strain theories are incorporated from the outset which account for

both finite rotations and large deformations. The present nonlinear strain

measures are deduced from the form of the virtual work of the internal force

of the beam as parameterized by the kinematic definition. An rate-type con-

stitutive law is employed to complete the formulation. A key feature of the

formulation is the use of a convected reference for the stress representation.

This leads to conceptual simplifications which enable a Cauchy stress repre-

sentation of the beam deformation as opposed to the classical Piola-Kirchoff

stress representations typically used in finite-deformation analysis. A con-

sistent linearization of the equations are presented for reference in future

chapters in which the tangent stiffness matrices are inherently symmetric as

a consequence of the Cauchy stress representation.

The next chapter discusses the discretization of the equations of

motion and the numerical procedures developed for the computation of the

discrete internal force expression.





CHAPTER III

COMPUTATIONAL TREATMENT OF THE
DISCRETE INTERNAL FORCE

3.1 Introduction

The previous chapter has presented a formalism for modeling the

spatial dynamics of flexible beams. The formalism accounts for both the

finite rotations and the finite deformations of a beam component. The dy-

namics of the beam motion are described using an inertial reference for

translational displacements and a body-fixed reference for rotational quan-

tities. To effect this description, finite strain rod theories are defined.

The numerical treatment of the formalism is now considered in detail

in the next two chapters. The present chapter is devoted to the numerical

treatment of the internal force operator, and the next chapter discusses the

dynamic solution procedures. For the effective treatment of the internal

force, a computational invariance to rigid body motion must be satisfied

within a discrete beam model to achieve realistic static and dynamic simu-

lations. As the degrees of freedom contain information of both rigid motion

and strain deformation, the internal force computation depends on a ju-

dicious procedure which filters out the rigid motions implicitly embedded

within the variables. This internal force computation can then be interfaced

with multibody dynamics solution procedures, to be discussed in Chapter

IV, with confidence that spurious strains are not computationally generated

in the process. For this purpose, a unique procedure for the computation

of the internal force has been developed by exploiting characteristics of the
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strain formulation as well asfinite rotation theory.

The finite element method is employedto give a finite-dimensional

representation of the continuum beam model. The variational form of the

partial differential equations presentedin Section 2.3 provides the basis for

a displacement-basedfinite element methodology [64], resulting in a set of

ordinary differential equations to be integrated by proceduresdiscussedin

Chapter IV. As such, the beam is representedas an assemblageof elements

interconnectedat nodal points on the element boundaries, and the degrees

of freedom of the beam becomethe position and orientation coordinates of

plane sectionsat the nodal points.

This procedure is a unique contribution to the computational re-

search in the area of flexible multibody dynamics. Previous inertial refer-

encebeamformulations arebasedon total strain measureswhich aredefined

with respect to constant material coordinatesof an initial configuration [25-

27,31-36].The invarianceof the particular strain computation hasnot been

specifically proven within these works. The present work is based on an

incremental formulation, thus providing a more natural interpretation of

large deformations by retaining the history of the motion in determining

the current stress state. This formulation differs from the previous works

in which the stress state is determined by comparing the current shapeof

the continuum to its original referenceconfiguration. In a manner similar

to the previous works, the present formulation employs non-commutative

orthogonal matrices for the general representation of finite rotations. A

complete freedom is thus allowed in choosing the parametrization of the

orthogonal transformation which achievesthe most effectivecomputational

scheme. The present work exploits this freedom by incorporating various
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parameterizations to derive accuratemethods for the computation of strain

increments within the stress update procedure.

The stress within a beam finite element is computed from the nodal

translational and rotational quantities as follows. Previous inertial reference

beam formulations are based on total strain measures which are defined with

respect to constant material coordinates of an initial configuration [25-27,31-

36]. As such, the stress state is determined by comparing the current shape

of the continuum to its original reference configuration in these works. The

present work is based on an incremental formulation, thus providing a more

natural interpretation of large deformations by retaining the history of the

motion in determining the current stress state. As discussed in Section 2.4,

the present formulation adopts an incremental procedure based on rate-

type constitutive laws in which the current stress state is updated from the

past stress state via a strain increment and appropriate constitutive ma-

trix. A computational procedure has been designed from this incremental

interpretation of the continuum-based formulation such that the computed

finite strain increments are invariant to arbitrary rigid body motions implic-

itly contained within the finite displacements. To achieve this invariance,

various rotational parameterizations are incorporated in deriving accurate

methods for the computation of strain increments within the stress update

procedure. As will be shown, the success of the computation hinges on

a proper extraction of the rotation increments from the various rotational

matrices embedded in the formulation. Given the strain increments, the

elemental internal force is then formed via the multiplication of a discrete

strain-displacement operator with the updated stress state.

The computation of the elemental internal force thus involves the
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proper treatment of large rotations. A great deal of literature exists on

the subject of finite rotations. An extensive derivation of the kinematics

of large rotations is presented in [55], and an overview of different methods

for parameterizing an arbitrary rotational orientation is given in [56]. A

brief overview of the various parameterizations employed in previous works

involving large rotations is given as follows. Euler angles or Bryant angles,

which are based on successive angular rotations about a predetermined set

of axes, were historically used for specialized rigid body systems and at-

titude dynamics [47-48]. To alleviate problems associated with the non-

commutative nature of this type of definition, commutative semitangential

rotations were derived and applied to a large displacement-small strain struc-

tural theory [54]. The rotational vector, which is based on the Euler-Chasles

description of a single rotation about an appropriate axis [55], has been used

within fully nonlinear beam and shell theories [31-34,57]. While the angle-

based geometrical interpretation of these parameterizations is recognized,

the rotational transformation matrix and subsequent angular velocity and

acceleration vectors are complicated trigonometric functions of these rota-

tion parameters. To avoid the complications of these nonlinear functions,

alternative parameterizations were developed such that the rotational ma-

trix, the angular velocity vector, and the angular acceleration vector become

algebraic functions of the rotation parameters. Examples of these alternative

parameterizations include the Rodrigues parameters [28,55], the conformal

rotation vector [36,58], and the Euler parameters [59-63]. In general, the

algebraic nature of these parameterizations is exploited when developing

computational strategies for general finite element and articulated system

models. The present formulation incorporates both the Rodrigues parame-
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ter arid the Euler parameter representations in developing an efficient com-

putation of the internal force which remains invariant to arbitrary rigid

body motions. The Euler parameter representation is further exploited in

Chapter IV for the integration of general spatial kinematic systems.

The computational procedure developed in this chapter is compared

to previous works through an analysis of static problems. The nonlinear

static equilibrium equations are solved in an iterative manner using the

Newton-R_hapson technique. The procedure is included for verification pur-

poses as the present formulation is intended more for use with multibody

dynamic applications rather than to compete with existing large rotation

and deformation beam finite elements used within static analysis.

The rest of the chapter is organized as follows. Section 3.2 gives

an overview of the rotational vector and Euler parameter representations

of finite rotations. The constant-strain finite element discretization of the

equations of motion is presented in Section 3.3. The algorithmic treatment

of the internal force is detailed in Section 3.4, and the static solution verifi-

cation is given in Section 3.5.

3.2 Finite Rotation Representations

The Euler-Chasles theorem states that any finite rotation can be

uniquely represented with a rotation angle _ and a rotation axis n [47-48].

This representation is shown below in Figure 3.1.

From this picture, we see a new vector r r is obtained by rotating a given

vector r by an angle _ about an axis n. The mathematical description of

this process is given by [47-48]

r' -- R.. r (3.2.1)
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Figure 3.1 Euler-Chasles rotation representation

where R denotes the dydadic form of the rotational operator given as

R(n,8) = nn + cosS(I-nn) + sinS(Ixn) (3.2.2)

with I representing the (3 x 3) identity operator. The above definition is

consistent with that of the angular velocity given in (2.2.9).

representation of the above definition is given as

The matrix

In this representation, the parameter

0_= nO {o,}
03

is termed the rotational vector, and 0 is the skew-symmetric dual matrix

0 -03 02

6 = 02 0 -01

-O2 O1 0

1 -- COS _ ~ -

sin 0 _}T "4- 02 O O (3.2.3)R=I+ T



defined from the three components of the rotational vector.

(3.2.3) is equivalent to the following series expansion [55]

1 _V 2 1 ~ T a 1 _T "R = I + + + + ... +

The above representation is precisely the matrix exponential
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The matrix

-_- ° °.

R = exp( _T ) , (3.2.4)

and thus the rotation matrix is a nonlinear exponential function of the

rotational vector components.

An incremental rotation which relates an existing body-frame basis

b n to a new basis b n+l is defined as follows [56]. Given that the existing

basis is defined with respect to an inertial basis e by the rotation matrix

R n as b n = R" e, and likewise a new basis is defined as b n+x = R n+l e,

the rotation matrix R n+l is obtained from the product of an incremental

rotation matrix R and the existing rotation matrix R n. This matrix product

can be performed as

R n+' = R(t) R n (3.2.5)

in which the incremental rotation operator R(t), termed a spatial rotation,

is applied to the existing body frame b n. A material rotation can also

be defined in which an incremental operator R(r) is applied to the inertial

reference frame as

R n+_ = R" R(_) (3.2.6)

The rotational vectors O and • that correspond to the spatial or material

incremental rotations R(t) and R(r), respectively, can be introduced as

R(l ) = c _r R(r ) = e4'r (3.2.7)
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The two rotational vectors are related via O -- 1_." _ .

While the definition of the rotational vector is straightforward, the

drawback to this parameterization is the nonlinear expression for the rota-

tional matrix. To avoid the nonlinearity seen in (3.2.3) or (3.2.4), alternative

parameterizations have been developed which lead to algebraic expressions

of the rotational matrix. For example, the Rodrigues parameters are defined

as

0

Ot = Ot n , Ot -- tan-_ (3.2.8)

such that the rotational matrix is given as a function of these parameters as

_

R = I + 1 (@T+ e, et ) (3.2.9)0_+

The drawback to the above parameterization is that it becomes singular

whenever the magnitude of the rotation becomes an odd multiple of _. In

general, a singularity condition is encountered within any three-parameter

representation of orthonormal rotation matrices [65]. An alternative non-

minimal parameterization, termed the Euler parameters, remains singularity

free throughout all possible orientations. The Euler parameters are defined

as

0 0

qo = cos 2 ' q = sin _ n (3.2.10)

and the four parameters are subject to the constraint

q0_ + qrq = 1 (3.2.11)

The rotation matrix is given as a function of the Euler parameters as

R = I ÷ 2qo_t T + 2(t¢] (3.2.12)
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Given these examples, for computational purposes it is necessary

to extract the various rotational parameterizations from given rotational

matrices. If an inverse exists, the rotational vector can be obtained from

(3.2.4) as

where

1 T
6r log_ R = --sin -1= (3.2.13)

I_ a __ R- R T (3.2.14)

is formed from the anti-symmetric part of P_ and r is the norm of the dual

vector to 1_ a [66]. For the Rodrigues parameters, the inverse of (3.2.8) is

the following algebraic expression [28]

Ra
_T _ 1 + trR (3.2.15)

For the Euler parameters, a very robust method involving only algebraic

computations has been derived in [67] to extract the Euler parameters from

the rotation matrix.

To complete this introduction to finite rotations and their param-

eterizations, it remains to express the angular variation, angular velocity,

and curvature vectors as functions of the given rotational parameterizations.

The body-fixed components of the skew-symmetric tensors representing the

angular variation, angular velocity, and curvature are defined as

_(_T = 61_ R T _T _ R R, T _T = OR RT

' - '

respectively. These definitions constitute spatial representations; the corre-

sponding material representation is given as

6 &Te _ lit 6(iT a. = I:t T 6 I:t



54

for the angular variation with corresponding definitions for the material

angular velocity and curvature tensors. From the above definitions, it is

seen that the derivative of the rotation matrix is necessary to obtain explicit

expressions for these functions in terms of a desired parameterization.

For the rotational vector parameterization, the derivative of the

exponential map is derived in [31,66]. The spatial angular variation is then

given as a function of the spatial rotational vectoI" and its derivative as

6& = 8 - sin8 sin8 1-coa8
83 (O.aO) 6 + --7-36 + 8=

The equivalent vector expression for the above skew-symmetric tensor is

given as

60, = T,. (O) ae (3.2.17)

where

T,. (0) = 8 - sin8 oT sin8 1- cos8 6T
8a 0 + ---g-- I + 8=

The material components of the angular variation are related to the material-

based rotational vector definition in the same manner as 5c_ = T, (0) 6¢

[56]. Analogous expressions exist for the angular velocity and curvature ten-

sors.

For the Rodrigues parameters, the functional relation

= T, (e,) (3.2.1s)

results [56], where

T, (%)
2

= 1 + 8,= (I + 6 T) (3.2.19)
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The identical relation holds for the material components of the angular

variation using the material components of the Rodrigues parameters.

The corresponding functional relation in terms of the Euler param-

eters is given as

{0}, ]
This expression can be inverted to give the Euler parameter derivatives in

terms of the body-frame angular variation components as

in which the constraint conditions

0_0_ 65 T q

q02 -t- qTq _ 1 , 6qoqo -b 6qTq -- 0 (3.2.22)

are embedded. The corresponding inversions of (3.2.17) and (3.2.18) have

been derived in [66].

The Euler parameters do not posses any singularity limitation

within their definition, nor within the forward or inverse transformations

between the angular and parameter variation. As such, the Euler param-

eters are the only set that allows the treatment of rotations of arbitrary

magnitude without resorting to any special precautions. In contrast, the

Rodrigues parameters possess an unavoidable singularity in their definition

[28], and the rotational vector parameterization possess a "hole in differen-

tiability" in which the transformation matrix of (3.2.17) becomes singular

[34]. Thus, the Euler parameter representation of the angular velocity and

curvature has been chosen in the present work in developing the computa-

tionai procedures to be discussed shortly. For the representation of incre-

mental rotations, both the rotational vector and the Rodrigues parameters



56

are introduced where appropriate, again with the motivation of achieving

effective computations dictating the particular choice of the parameteriza-

tion. These concepts are referred to and further illuminated in the following

sections.

3.3 Finite Element Discretization

A finite element representation of the continuous beam model is

obtained from the variational form of the partial differential equations pre-

sented in Section 2.3. The present study is based on the use of linear shape

functions in approximating the displacement field within a beam finite ele-

ment [64], viz.,
ripe

u = N1 (x) u1 (t) (3.3.1)
I=l

where NI denotes the spatial linear shape functions, ui represents the de-

grees of freedom at the element nodes, and npe denotes the number of nodes

per element. In the present beam formulation, the rotational variables are

treated independently from the translational variables. As such, only Co

displacement continuity across element boundaries is required for the shape

function approximations. Thus, the linear interpolation functions result in

a consistent approximation which leads to a constant strain finite element.

As defined above in (3.3.1), the interpolation of the translational

quantities is straightforward as the components are expressed with respect

to a common reference frame. However, the interpolation of the rotational

variations requires special consideration. The virtual rotation components

ga used within the present formulation are defined with respect to a body-

fixed reference frame which is continuously changing along the beam neutral

axis. As such, these virtual rotation components cannot be directly inter-
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polated, but rather must be transformed to a parameterization definedwith

respect to a fixed configuration prior to the interpolation. To this end, the

virtual rotations can be paxameterized in terms of the rotational vector via

(3.2.17), where O is the rotational vector orienting the moving basis from a

common reference as the inertial frame. The components of the rotational

vector axe defined with respect to a fixed coordinate system as

O - 0n = 0_e_ ,

and hence the variations of the rotational vector can be interpolated as

6O

ripe

= _]N+_0I
I=1

From the above, the virtual rotations _a can then be interpolated as

_ = T(O),_O

npe

_-- Z T(O)NI _0I
I=1

ripe

= _ N+ T(O) W-_(e+)_az
I=I

If O =¢, 0x, the product T(®) T-X(0i) =e;, I [34]. Thus, if the rela-

tive change of the cross-section orientation along the finite element remains

small, the virtual rotations are approximated in the same manner as the

displacements as
np¢

6a '_ Z Yt _otI (3.3.2)
I----1

The angular velocity and angular acceleration are then also interpolated as

ripe ripe

w = Z Ntwz , & _ Z N r&z (3.3.3)
I=X 1=1
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From this introduction to the finite element approximations, a discrete form

of the present beam formulation is readily obtained as follows.

3.3.1 Discrete Equations of Motion

A discrete form of the variational equations (2.3.1) is obtained from

nodes from (2.3.25) and (3.3.4) as

6F s = _ {guz _,} _ [BE] T N'r d_ (3.3.5)
I=l M_

To_._

0

_l NI S T ]

JsT(_sN, + -_+ )
(3.3.6)

By introducing linear shape functions into the above and integrating across

the element length, the above equation can be written as

_Fs = {6ul +u2 _, _ ) [ s E] M_

the finite element approximations

npe ripe

_u = _ NI _ux , _ = _ N, 6as (3.3.4)
Iml I=l

for the virtual displacements and virtual rotations, respectively. As standard

linear shape functions are chosen for NI, ul and (_az represent the quantities

at the two element nodes. From the above interpolations, a discrete form of

the inertia, internal, and external force operators presented in Section 2.3

are obtained for a single finite element. Finite element assembly procedures

are then applied to the element operators to achieve discrete variational

equations in terms of the nodal degrees of freedom of the beam configuration.

To this end, the discrete form of the elemental operators are given as follows.

The internal force operator of an individual finite element is ob-

tained in terms of the virtual displacements and rotations at the element
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where

[B E ] =

o o s_( _" _

(3.3.8)

In deriving the above expression, an underintegration of the rotational vari-

ables associated with transverse shear strain has been performed to avoid

the locking phenomena associated with the Timoshenko beam formulations.

The convected frame T matrix, body frame curvature tensor _s, element

neutral-axis length _, and resultant stresses N_ and M_ are constant quan-

tities over the element domain, while the relative cross-section deformation

S matrices are nodal quantities as denoted by their subscripts.

In the same manner, the element external force operator is obtained

from (2.3.29) and (3.3.4) as

I=l

(3.3.9)

and the traction operator is implemented as boundary conditions on the

nodes. Likewise, the element inertia operator is obtained from the (2.3.4),

(3.3.3), and (3.3.4) as

5F I

npe ripe

= E E { .A M% dr2 } +
I-----1 K=I

ape npe

dt } +
I=.1 K=I



npe

I--1

6O

(3.3.10)

where

represent the element mass matrix and nonlinear angular acceleration vec-

tor. The former will be evaluated as a standard lumped mass matrix for the

computational efficiency of explicit integration techniques to be described

in Chapter IV, and the latter will be evaluated in a consistent manner by

averaging the element nodal angular velocities.

When standard finite element assembly procedures are applied to

the element operators presented above, one obtains the discrete variational

equations

i{m 0 }{0}{ 6Ud T 60_d T } n t- .-}-

3"4 &d Dd(w) S_

,-: {:i} (3.3.11)

where 6ud and 6o_a now represent the nodal virtual displacements and rota-

tions of the assembled finite elements modeling the beam configuration. The

following notation has also been introduced in the above equation; rnd and

Jd represent the assembled mass and inertia matrices; /_d and &d represent

the nodal acceleration vectors; Dd(w) represents the assembled nonlinear ac-

celeration, and Sd e'b and fd e'b represent the assembled internal and external

force vectors partitioned into translational and rotational parts, respectively.

As $Ud and 6C_d represent arbitrary independent variations, the final discrete

equations of motion are given as
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{°} /•
0 Jd clod Dd(w) S_ f_

(3.3.12)

These equations can be specialized to the case of static equilibrium as

Sd = fd (3.3.13)

The static equilibrium equations provide the basis for the remainder of the

chapter which is devoted to the computation of the internal force. The

extension of the computational procedure to include the dynamics of the

inertia operator is presented in Chapter IV.

To present the algorithmic treatment of the discrete internal force

Sd, the rest of the chapter is organized as follows. The evaluation of (3.3.8)

is detailed by presenting the computation of the discrete rotation matrices in

Section 3.3.2 and the computation of the element curvature in Section 3.3.3.

The computation of the resultant element stresses N-_ and .h1_, necessary

to complete (3.3.7), is then presented in Section 3.4. Finally, the numerical

solution of the static equations (3.3.13) is presented in Section 3.5.

3.3.2 Discrete Rotation Matrix Computations

The rotational matrices representing the various reference frames

introduced in the present formulation are computed as follows. The compu-

tational procedure for the solution of the discrete equations of motion will

be discussed in Chapter IV. From this solution procedure, the orientation

of the cross-section and the displacement of the neutral-axis at the finite

element nodes are output as known quantities. The matrices Ri, repre-

senting the cross-sectional orientation at each element node, are computed

directly from the rotational parameterization of the given solution method.
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The rigid motion of.the convected reference frame a of a given finite ele-

ment is then deduced as follows. The translational displacements are used

to compute the tangent to the neutral axis al; for the linear finite element

interpolations the tangent is simply the straight line connecting the two el-

ement nodes. The remaining two basis a2 and a3 of the convected reference

frame are then constructed from the tangent al and the cross-sectional ori-

entation R1. The a2 vector is defined as the cross product of al with the

b3 axis of R1, and the a3 axis is then defined to complete the right-hand

coordinate system. The computed axes { al,a2,a3 }, as shown below in

Figure 3.2, define the rows of the T matrix.

_2

y
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) el

Figure 3.2 Convected Reference Frame

The rotation matrices Si , defined at each element node as the relative

difference between the element convected frame and the nodal body frames,

are thus

Si = RiT T , i = 1,2 (3.3.14)
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The computation is an approximation applicable for moderate strains such

that the Si matrices contain information solely due to transverseshear and

torsional deformations [28].

3.3.3 Discrete Curvature Computation

To complete the evaluation of (3.3.8), the discrete computation of

the element curvature is presented as follows. The body frame components

of the curvature tensor _T can be equivalently defined using the l:t or S

matrices as

0 K3 mR2

--K; 3 0 _1

_2 --_1 0

= v0a_____SSsT _ 0e R RT (3.3,15)
0_ 0_

since by construction the convected frame T matrix is constant along the

element domain where the differentiation is performed. Thus the curvature,

which was originally defined from the shear matrix in (2.3.27), can be di-

rectly computed from the nodal rotational variables of R denoting the total

cross-section orientation. This is advantageous as the Euler parameters of

l:t are directly available from the generalized coordinate integrator discussed

in Chapter IV, whereas additional computations are required to obtain the

Euler parameters corresponding to the S matrix.

The Euler parameter representation of finite rotations can be ex-

ploited to achieve a simple and robust computation of the element curva-

ture. The Euler parameter - curvature relation, introduced in (3.2.20), is

{ } °q0 = E(q) _-_

given as

-- _2 (3.3.16)

_3
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where

The above is evaluated from the Euler parameters of the element nodes by

using the normalized average

1 ( q, + q2 )
q" = [1½ ( ql + q2 ) II (3.3.17)

for the matrix E and the approximation

Oq 1

0_ -- e ( q2 - ql ) (3.3.18)

for the derivative. Within the geometric context of rotations, the Euler

parameters qa of (3.3.17) correspond to an orientation averaged from the two

nodes. The computation of (3.3.16) from (3.3.17) and (3.3.18) is consistent

in that the constraint conditions

Oqo c3q T

q02 + qTq = 1 , "_-q0 + _-_ q = 0

are identically satisfied in the discrete sense. Due to the singularity free

nature of Euler parameters, the computation is valid for any size nodal

rotation. The use of an alternative rotational parameterization for the corn-

putation of the element curvature requires special treatment to avoid the

inherent singularities within the representation [34].

To show the robustness of the averaging scheme adopted herein,

we offer the following analysis. By examining the rigid rotation of a finite

element in a state of constant curvature, it can be shown the computa-

tional strategy effectively filters out the large rigid-body motions implicitly

contained within the nodal Euler parameters. For this purpose, the total



65

orientation of the nodal cross-sectionsaredescribedby separating from the

outset the effectsdue to rigid motion and that due to deformation. The

orientation of the convectedelement frame is characterized by a rotation

of an angle ¢ about an axis na from the inertial referenceframe, and the

relative nodal cross-sectionorientations arecharacterizedby arotation from

the convectedframe of angles -r and r about axis nb for nodes 1 and 2,

respectively, as shown below in Figure 3.3.

Figure 3.3 Pure Bending of Beam Element

From these definitions, the Euler parameters qrl and qr2 representing the

relative nodal orientations and qa representing the convected orientation are

given as

cos2 cos_- ' qa = sin_ n_q"' = -- sin _ nb , qr2 = sin _ nb

The Euler parameters ql and q2 designating the total cross section orien-

tation of the two nodes due to these combined effects can be obtained by
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applying the quaternion product rule [68] to the abovedefinitions to yield

{ . }cos{cos7 + n. nb sin2

ql = r { r--cos{sin_ nb + cosTsin na -- sin_-sin{ na ×nb

cos { cos _ - n. "nb sin { sin _ /
q2 = r rsin{ na + sin2sin{ na ×nbcos { sin _- nb+ cos 7

The average of the above nodal parameters is simply

1 cos { cos g

5 ( q' + ) = -cos 7 sin na
t

the norm of which is cos _. It is seen the normalized average precisely rep-

resents the orientation of the cross-section at mid-element which contains

no relative deformation as equal but opposite relative rotations were applied

to the ends of the element. The normalized average of the nodal Euler pa-

rameters thus corresponds to an orientation geometrically midway between

that of the two nodes. It is then easily shown from the constructed parame-

ters that the computed curvature for the pure bending of the finite element

becomes

4 T

,_ = _ singnb

as opposed to the true curvature of _rnb. It is noted that the above compu-

tation retains only the rotation parameters r originally defined relative to

the rigid body orientation, and is thus invariant to any rigid body motions.

The approximation is valid for small relative rotations of the cross-sections.

For instances when the validity of the approximation is challenged, an incre-

mental curvature computation can be made as discussed in the next section,

from which the total curvature is obtained from an appropriate update pro-

cedure.
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3.4 Incremental Strain Computations

To complete the algorithmic treatment of the nonlinear stiffness op-

erator, it remains to discuss the computation of the element stresses. The

stress update procedure, discussed in Section 2.4, requires an effective com-

putation of the increment of strain between a past converged solution and a

current solution. A specific computational strategy has been developed for

use with this incremental interpretation of the continuum-based formulation.

The fundamental property motivating this development is the c°nditi°n that

the finite strain increments be computed from the nodal degrees of freedom

in a manner that is invariant to any arbitrary rigid body motions contained

within these variables. Given an accurate computation of the incremental

strains, the stress update procedure directly follows as discussed in Section

2.4.

The incremental strains are defined to approximate the time inte-

gration of the strain rate tensor over a given time interval. To effect this

approximation within the present virtual work formulation, the kinemati-

cally admissible virtual displacements and rotations within the virtual strain

displacement relations are defined to coincide with the actual displacements

and rotations occuring within a finite increment of time. The strain incre-

ments are thus defined in the same manner as (2.3.20) and (2.3.21) as

= T 0--T- + -AZ3

a A#

where/_u and _fl are finite displacement and rotation increments, respec-

tively. For computational purposes, it becomes necessary to separate the
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rotation due to rigidbody motion from that due to deformation within the

convected frame components of the incremental rotations £8. The con-

vected frame virtualrotations 6/_can be decomposed as

$/_ = 6rQ + 6_0 (3.4.1)

where 6_ and 6r4 are the convected frame components of the rigid body

and deformation virtual rotations, respectively. These virtual rotations are

defined as

_¢_T = 6T T T , _'rl m sT_s (3.4.2)

The definitions (3.4.1) and (3.4.2) have been derived from the identity

R = ST , 6R = 6ST + S6T

and the following definitions

65T = 6RRT, _T = sT_sTs

_,_T = 58 S T , 6"rI -- S T 6"_T S

With the decomposition (3.4.1) interpreted incrementally, the membrane

and transverse shear strainincrements are then givenby

{0}{0}£7 = T 0"-_- + -/_3 + -£ra, (3.4.3)

Likewise, the incremental curvature representing the torsion and bending

strainsisgiven by

0_ (3.4.4)

as the incremental rotations A_ defined from the T matrix are constant

over the element length.
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A proper definition and subsequent computation of the finite dis-

placement and finite rotation increments introduced in these incremental

strain definitions is essential. The incremental translations are defined as

the difference between a current and past displacement configuration as

£U =_ U nW1 -- U n (3.4.5)

The incremental rotations are interpreted from properly defined rotation

matrices which represent the difference between current and past orienta-

tions. It is important to note that the angular variation definitions (3.4.2)

are consistent with the following spatial and material rotation updates

T"+ 1 = AT T n ' S n+l = SnAS , (3.4.6)

respectively. In the above relations, the matrix AT represents the relative

orientation between the current and past convected reference frames, and

AS represents the relative orientation between the current deformation ma-

trix S n+l and the past deformation matrix S n rigidly rotated to the current

convected reference frame. The incremental rotations of the rigid body mo-

tion, /Nqa, are then defined as the rotational vector representation of the

rotation matrix AT, while the incremental rotations of the deformational

motion, _va, are defined as the Rodrigues parameter representation of the

matrix AS. The latter choice is possible as it is highly improbable that a

singularity is encountered due to large rotational deformations. The differ-

ent parameterizations are chosen such that objective computations of the

incremental strains (3.4.3) and (3.4.4) are achieved.
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Membrane Strain Increments

To achieve an objective computation, the first two terms of (3.4.3),

given as

must be computed such that rotation increment /_ compensates for the

rigid motion contained within the displacement increment /_u. This is ac-

complished by defining the skew-symmetric matrix containing the convected

frame rotation increments as

Z_ T = ( T "+1- T" ) T n÷½T

This definition is a varied form of the approximation

(3.4.8)

T "+1 _- ( _ + a# r ) T"

for the rotational vector A_o which parameterizes AT as

T "+1 = e a_r T" (3.4.9)

The reference frame T"+½ introduced in (3.4.8) is defined to be geometri-

cally midway between the current and past convected reference frames as

T "+½ - AT "+½ T n (3.4.10)

1

aT"+½ - exp( _A# )

This mid-configuration matrix is necessary in (3.4.8) such that a skew sym-

metric matrix results for /_T; this follows from (3.4.8) and (3.4.10) as

/_T _ Tn+I Tn+½ r _ T n In+½ r

= AT.+ ½ _ AT.+ ½ r
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To incorporate the computation (3.4.8) within (3.4.7), the matrix Tn+½

must be used within the first term of (3.4.7) to rotate the translational

derivatives. The reasoning for this is given as follows as well as examples

exhibiting the invaxiance of the computation.

To illustrate that the preceding computation preserves rigid mo-

tions, let us consider a beam element which is rigidly rotated such that

A71 -- 0. The nodal incremental translations for the rigid rotation of a

beam element pinned at the first node becomes

Aul = 0

hu2 = e (t( n+x-t¢ '_) , t( = T12

T,3

where t( corresponds to the first row of the T matrix containing the direc-

tion cosines of the rotation and e is the length of the beam element. The

translational derivative within (3.4.7) is then evaluated as

0hu
= t0+l - t( n , (3.4.11)

0(

and the rotation increments axe obtained from (3.4.8) as

{0}-A_3 = - T"÷½ ( t0÷l - t_" ) (3.4.12)
A_2

With this information, equation (3.4.7) is evaluated as

OhU n+l n

£"}'1 : Tn+½ ( 0_ t_ + t_ ) (3.4.13)

by combining (3.4.12) with the translational derivative term rotated by

Tn+½. It is then easily seen from (3.4.11) that this particular computa-

tion leads to

A71 = T"+½ (t0+1 - t_" - t_"+I + _")

= 0
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as desired.

As in the preceding example exhibiting the rigid rotation of a beam

element, an accurate computation of the neutral-axis stretch which is invari-

ant to arbitrary rigid rotations can also be accomplished. For this case, the

incremental displacements for an arbitrary rotation and stretch are given by

/_Ul = 0

A_ = ( (e + a)t_"+_ - e tC )

where d represents a stretch relative to the element length g at a past con-

figuration. The rotational expression (3.4.12) remains valid, and the trans-

lational derivative is now evaluated as

Ofi, u 1

o_ - e* { (e + d) t_"+a - g t_" }

where g* corresponds to the deformed element length at a given configura-

tion. The above is substituted into (3.4.13) to give

/_'a = T "+½ ( g + d g n+lg'-'-T--t_ n+l g. t_ n - t_ + t_ n )(3.4.14)

for this particular example. From the above, it is immediately seen

that if the length derivative is evaluated at the current configuration as

e* - ge + d, then

d Tn+½ t_,A71 - g + d

By incorporating (3.4.10), this is equivalent to

A71 d AT.+ ½
g+d

_ d AT.+ {
g+d

T n t_ n

1
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To achieve a computation representative of a pure stretch in which the

two transverse shear componentsare identically equal to zero, the above

computation can be premultiplied by ATn+½ r to give

d 0

A71 = t + d 0

Thus the general strain computation, obtained by premultiplying (3.4.13)

by AT n+½T and using the relation

AT = T n+l T nT,

becomes

{i- 1cq_n+l + AT12 (3.4.15)
ATx3

It is noted that this computation does not require an explicit evaluation of

Tn+½. In effect, the convected frame strain components were evaluated at

the configuration T'_+½ as at this location the computation is invariant to

rigid motion. The mid-configuration computation is then transformed to

the current configuration T "+1 to achieve the proper stretch evaluation.

The same type of result can be achieved in a slightly varied manner

as follows. The length derivative g* in (3.4.14) can also be evaluated at the

past configuration as e* - t. Equation (3.4.14) then yields

A,,._I .-- d Tn+½ t n+ 1
g

This expression must be premultiplied by ATn+½ to yield a computation

representative of a pure stretch as

"/_1 --" /1}d 0

o
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Premultiplication of (3.4.13) by ATn+½ gives the alternative generic corn-

putation

0_,_ + AT21 (3.4.16)
AT31

Either evaluation, (3.4.15) or (3.4.16), yields a membrane strain

computation which is invariant to arbitrary rigid body motions. The con-

vected frame strain components were evaluated at configuration Tn+½ in

(3.4.13) to filter out the rigid motion; this mid-configuration computation

was then transformed to an appropriate configuration, T n or T r_+l , such

that the membrane strain component is non-zero and the transverse shear

strain components are identically equal to zero. To effect a strain evalu-

ation at the mid-configuration as dictated by the stress-update procedure,

the computations (3.4.15) or (3.4.16) need only be multiplied by the factor

e*

_-(e- + e.+l)2

3.4.2 Transverse Shear and Curvature Strain Increments

Given the computation of the incremental membrane strain involv-

ing the displacement and rigid rotation increments, it remains to compute

the incremental transverse shear and curvature strain increments involving

deformational rotation increments. To this end, the strain terms

{o}= -£ra3 (3.4.17)
ATa 2

representing the transverse shear strain and

0 £ra
/_a -

0_ (3.4.18)
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representing the curvature strain are computed independently from the

membrane strain/_71 as follows.

The deformational rotation increments/_va correspond to the rota-

tional vector parameterization of AS. The computation of (3.4.17) would

thus require the nonlinear exponential inverse (3.2.13), and the computation

of (3.4.18) would require an even more complicated derivative of (3.2.13).

A simpler and more efficient computation can be achieved by incorporating

Rodrigues parameters to represent _ra and its derivative. The Rodrigues

parameter representation of the angular variation (3.2.18) is interpreted in-

crementaUy as

2 _T
Ara -- 1 + e_ [I + ]A®, (3.4.19)

The parameters O, and AOt, which represent the $nq-1 and z_S matrices,

respectively, can be easily computed from (3.2.15). In addition, as the S

matrices are nodal orientations relative to a common elemental reference

frame T, the corresponding nodal Rodrigues parameters are defined with

respect to a common basis and thus can be properly interpolated to achieve

a discrete evaluation of the elemental strains (3.4.17) and (3.4.18). With

this introduction, the incremental transverse shear and curvature strains

are computed as follows.

The elemental shear strain can be computed in two ways. A set

of Rodrigues parameters can be computed at each of the element nodes as

the matrices S n+l and AS are nodal quantities themselves. The algebraic

average of these nodal parameters, consistent with the standard underinte-

gration of transverse shear to prevent locking, can then be used to evaluate
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(3.4.19). A more accurate method interprets the underintegration in a geo-

metric sense by defining one set of Rodrigues parameters from the relative

orientation of the mid-element cross-section. This mid-element shear matrix

S,_ is defined as

Sa = R. T T

where the matrix R.a corresponds to the geometric average of the total

cross-section orientation matrices at the element nodes and T is the ele-

ment convected frame. The mid-element total orientation matrix Ra can be

immediately found using the normalized average of the nodal Euler param-

eters as defined in (3.3.17). The Rodrigues parameters [St and AOt used to

evaluate (3.4.19) are then obtained from the matrices

S_ +1 = R_ +1 Tn+ 1T

ASa _- SanT Sa n+l ,

(3.4.20)

(3.4.21)

respectively.

The elemental curvature (3.4.18) is computed by differentiating

(3.4.19) as

OAT.

04
2 [_)T OiOt

1+of [I+ ] 04 + 1
40t [_T

- (1 + of)_ [_ + ]_o, (3.4.22)

The derivative terms are approximated over an element of length _ as

0 Ot 1
- (e,, - e,, )

,::t4
0 AO, 1

- ( AO,, - _O,, )

using the nodal Rodrigues parameters Or, and AOt_, i 1,2. The non-

derivative terms are evaluated using the mid-element shear matrices defined
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in (3.4.20) and (3.4.21). This choice is obtained using the same concepts

introduced in (3.3.17) and (3.3.18) to evaluate a total curvature from the

Euler parameters of the nodal orientations.

Thus completes the computational details of the incremental strain

evaluations. The strain computations are given by (3.4.15) or (3.4.16) for

the incremental membrane strain, (3.4.17) and (3.4.19) for the incremental

transverse shear strain, and (3.4.18) and (3.4.22) for the incremental curva-

ture. These accurate incremental strain computations are a vital ingredient

of the stress update procedure detailed in Section 2.4.

3.5 Static Solutions

The ability of the computational procedure to effectively model large

deformations is demonstrated as follows. Static equilibrium configurations

corresponding to given external forces are compared to results in the existing

literature. A solution to the nonlinear static equations

S( u n+l , R "+1 ) = f_+l (3.5.1)

for the configuration which maintains equilibrium between the internal

stresses and externally applied forces can be obtained from a Newton-

Rhapson iteration procedure. The Newton-Rhapson technique requires the

consistent linearization of the internal force as derived in Section 2.5. Given

the geometric and material tangent stiffness matrices K G and /(M repre-

senting the linearized internal force, the equations

Au } _,+1 (3.5.2)[ KG '[- KM ](k+ 1) /ko_ (k+l) ---- --r(k+l)

_ :,,+I (3.5.3)r n+1 - S(u n+1, R "+1) -
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are solved at the k + 1 *h iteration for the incremental translations Au and

rotations &a.

updated via

From this incremental solution, the nodal translations are

U n+(lk+l) _ _n+l (k) + Au , (3.5.4)

and the nodal orientations are updated via

Rn+(lk+l) -" exp ( A_ T ) R n+l(k) (3.5.5)

The procedure is initiated with a prediction for ( u"+_ ]:}n+l, _" 0 )" The

residual is then reevaluated with the updated solution, and the procedure

continues until the norm of the residual converges within a given range of

zero. A discussion of the tangent stiffness matrices within (3.5.2) and static

results obtained from the Newton procedure are given as follows.

B

3.5.1 Discrete Tangent Stiffness Matrices

The finite element method is used to obtain discrete representa-

tions of the material and geometric tangent stiffness operators presented

in (2.5.29) and (2.5.31) in the same manner as discussed in Section 3.3 for

the finite element discretization of the internal force operator. The discrete

elemental matrices are given as

_g M - {_Ul ¢_u2 (_1 _2} T

KM1 -MK 12

M r _'M
K 12 K 22

Au2

Aal

A_ 2

for the material tangent stiffness where the partitions K iM. are given as

1 T T C1 T -T T CIT]

-T T C1 T T T C1
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1

K5 =
-T T el _1 ST

T T Cl ;1 sT

-T T el _iST

T T Cl ;isT

where

_-M
/_ 22

s, ;ITc, hSlr
_ ! S_C_STt

sym 4

+ } s_ c_ s_

C1 = Diag ( EA, GA, GA )

C2 = Diag ( GJ, EI2,EI3 )

It caa be seen that this material tangent stiffness matrix is simply a trans-

formation of the standard linear Timoshenko beam stiffness matrix as

K M = Th T KTM TK

where

TK = Diag ( T, T, S1, S2 )

and

KTM =

I el I el I Cl ;I I el ;1

I CI 1_ el ;1 _l el ;l-e l C, _ 2 2

I ~ __1- ":" " t':

'T C1 2 sT C1 _ z f C1 ;1 _ 'T C1 _1
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+

0 0 0 0

0 0 0 0

o o

0 0

As seen from the above decomposition, KTM possesses the correct number of

singularities to correspond to the six rigid body modes. Thus, the material

stiffness matrix K M is not rank deficient when reduced integration methods

are introduced for the rotational degrees of freedom associated with the

transverse shear strain.

Likewise, the geometric element stiffness kernel is given as

_K G .- {6Ul 6u2 6_ 1 6_2} T

K% K%

G T
K 12 K_2 Aul }

Au2

A oq

Aa2

.G
where the partitions _K ij become

KG 1 N1
f

I -I

-I I

K_2 =
TT( I • -- 1 *7M _i ) S T

T T ( 1 , 1 ,-Ti + iN ) S T

T T ( 1 * 1 *--IM - iN )S T

TT( 1 * 1 *7M + _N )sT

s, J s_ -& J ST

.& J sT, s: s sT
+
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1

The geometric stiffnessis simply

K G = TK T KTG TK

where

KTG

-_ I _ N__tI _ M* -1-_ M*

1 M* _ M*x I -7
_0

_! M *T _ J --7-_ J
M*T t t t

-} M*T "il M .r ____t J _t J

+

0 0

0 0

1 y ,T 1 N .r

N ,r 1 y ,T1_
- 2

_! N*
2

1 N*
2

__1 0*
2

__1 O*
2

_! N*
2

! N*
2

1 O*

1 O*

+

0 0 0 0

0 0 0 0

0 0

0 0

1 0 *r--3

_ 10 .r
2

1_ o*r

1 0 *T
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Again, it is seen from the above decomposition that the geometric stiffness

also contains the correct number of singularities to correspond to the six

rigid body modes. The geometric stiffness matrix is not rank deficient when

the reduced integration techniques are employed.

Two remarks are made in regard to the above derivations. First, it

is noticed that the elemental curvature x has been neglected. The transfor-

mation from convected coordinates to body frame coordinates of the virtual

rotation spatial derivative is effected via (2.3.26) as opposed to (2.3.27). In

this manner, the spatial derivative employed is as witnessed by the con-

vected reference frame rather than the cross-section reference frame. For

static analysis, better convergence results from this interpretation. For dy-

namic analysis however, the transformation (2.3.27) is retained to coincide

with the analogous angular velocity representation. As such, the interaction

between the curvature and angular velocity is accurately represented. Sec-

ond, the tangent stiffness matrices are symmetric. Previous works achieve

symmetric tangent operators by incorporating specific rotational parame-

terizations within the formulation [34-35]. The additional complexity re-

garding the potential symmetry in these works arises due to the use of the

unsymmetric first Piola-Kirchoff stress representation, whereas the present

formulation directly achieves symmetric tangent matrices due to the use of

the Cauchy stress representation.

3.5.2 Example Problems

In this section, two numerical examples are given to demonstrate

the effectiveness of the formulation in modeling large deformations. The

results are compared to those reported in the literature.
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In the first example,a cantileverbeamis subjected to a concentrated

end moment M about the b3 axis as shown in Figure 3.3a. The beam is

modeled with twelve linear elements. The total load of M = 2 rn is applied

in ten equal load increments, and an average of 8 iterations is required at

each increment to reach a converged configuration. The deformed shapes of

the beam at each load increment are shown in Figure 3.3b. The tip position

coordinates at each load increment are compared to results reported in [27]

in Table 3.1 and also the true arc segments of a circle of the appropriate

radius of curvature.

In the second example, a cantilever 45-degree bend located in a

horizontal plane is subjected to a concentrated vertical static end load as

shown in Figure 3.4a. The bend, of radius 100, is modeled with 8 linear beam

elements. A total load of 600 is applied in twelve equal load increments, and

an average of 10 iterations is required at each increment to reach a converged

configuration. The deformed shapes of the beam at each load increment are

shown in Figure 3.4b. The tip position coordinates at each load increment

are compared to results reported in [24,32] in Table 3.2.

The results are given as follows.
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3.6 Concluding Remarks

The finite element representation of the equations of motion derived

in Chapter II has been presented. Much attention was focused on the dis-

crete form of the internal force, an accurate computation of which remains

key to any static and/or dynamic simulations. The numerical procedure for

the computation of the nonlinear internal force, as developed from the con-

tinuum formulation, was proven to be invariant to arbitrary rigid motions of

the beam while effectively modeling the strains due to stretching, transverse

shear, torsion, and bending deformations. Particular developments include

the discrete computation of rotational matrices embedded within the formu-

lation, a discrete computation of the element curvature based on the Euler

parameter functional relation, and incremental strain computations to effect

the stress update procedure. The fundamental property motivating these

developments is the condition that quantities be computed from the nodal

degrees of freedom in a manner that is invariant to any arbitrary rigid body

motions implicitly contained within these variables. The success of the in-

cremental strain computational procedure hinges on a proper extraction of

the rotation increments from the various rotational matrices embedded in

the formulation.

The developments of multibody dynamic solution procedures is pre-

sented in the following chapter. The present internal force computation is

interfaced with these developments to achieve effective dynamic simulations.



CHAPTER IV

MULTIBODY DYNAMICS SOLUTION PROCEDURES

4.1 Introduction

The formulation modeling the large rotation dynamics of a flexi-

ble beam has been developed in Chapter II. The algorithmic treatment of

the beam internal force such that the strain computations are preserved

under the large rotations was detailed in Chapter III. The purpose of the

present chapter to extend these developments to the framework of flexible

multibody systems. To achieve an effective simulation methodology, an au-

tomatic formulation of the equations of motion for multibody systems is

necessary. In addition, efficient numerical solution procedures need to be

developed for the solution of these equations. The numerical procedures for

multibody systems must include a proper treatment of the spatial rotations

and the constraint conditions. The analytical and computational formalisms

presented in Chapters II and III are highly conducive to these goals. The

present chapter develops an effective numerical solution strategy for flexible

multibody dynamic systems.

To formulate the equations of motion for multibody systems, two

basic approaches have been discussed in the literature. One approach an-

alytically eliminates the constraint conditions a priori to achieve a mini-

mal set of second order differential equations [69-76]. In these recursive

type formulations, relative coordinates between bodies are used to define

the kinematic relations, and modal coordinates are used to define the local

deformations. However, when the kinematic constraint equations are intro-
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duced in the early stagesof analysis, the development of the equations of

motion becomesunnecessarilycomplicated. Equations with a high degree

of nonlinearity and low degreeof sparsity result when the relative coordi-

nates are employed. In contrast, a secondapproachintroduces absolute or

Cartesian coordinates to model the kinematic relations of each individual

body in the system. The Lag'rangemultiplier technique is then employed

to couple the algebraic constraint equations with the differential equations

of motion; the result is a maximum set of differential and algebraic equa-

tions. This approachhasbeen applied to the floating frame formulations of

beam dynamics where the displacementsof elastic bodies are modeled by

superposinglocal elastic deformation coordinatesonto rigid-body reference

coordinates [8-11,16,77].To employ the approach within multibody appli-

cations, the assumedelastic displacementfield must be consistent with the

nonlinear constraint equations. As simple free-body modes are not suit-

able to describe the deformation shape of many constrained components,

consistent displacement fields are defined via a proper choiceof the body

referenceframe [8]. To better accountfor reactionsdue to joint connections,

static correction modesare introduced to model the elastic displacementsof

flexible components [10-11]. The important issuethus becomesthe proper

choiceof modal coordinatesto representconstrained components.

The present beamformulation alleviates this issueand is extended

into the field of multibody dynamics as follows. As discussedin Chap-

ter II, the beam componentsare modeled using inertially-based degreesof

freedom which embody both the rigid and deformation motions. As these

degreesof freedomare kinematically of the samesenseas the physical coor-

dinates of rigid body components, the equationsof motion for an arbitrary
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configuration of flexible beams and rigid bodies can automatically be gen-

erated in terms of an identical set of physical coordinates. Incorporation

of multibody system constraints via the Lagrange multiplier technique be-

comes straightforward. A salient feature of this type of formulation is that

numerical solution procedures for treatment of multibody systems can be

directly applied to the generalized coordinates of both the rigid and flexi-

ble components. In comparison to the floating frame types of formulations,

concerns of correct modal representation of the deformation are eliminated

as well as the separate numerical treatment of the contrasting characters of

the reference and elastic coordinates.

Given the flexible multibody system model, specialized numerical

procedures must be developed for the solution of the equations of motion.

As the equations of these articulated systems inherently involve large rota-

tions and constraint conditions, numerical procedures must include treat-

ment of these effects as well as the integration of the generalized coordinates.

In the context of present type flexible beam dynamics formulations, the ex-

tension of the implicit Newmark algorithm to include proper treatment of

the nonlinear rotation fields was proposed in [32], and consequently used in

the works of [34,36]. To treat the spatial rotations, the equations of motion

are written in terms of a particular rotational parameterization and then

discretized by an implicit algorithm. The configuration orientation and an-

gular velocity are updated from the solution for the rotational parameters by

implementing discrete counterparts to the functional relations overviewed in

Section 3.2. In contrast to these implicit integration techniques, the present

work develops explicit integration techniques for use within the rotational

dynamics context [44]. For this purpose, a two-stage modification of the
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central differencealgorithm is presented to integrate the translational co-

ordinates and the angular velocity vector. Once the angular velocities are

obtained, the angular orientations areupdated by incorporating an implicit

trapezoidal algorithm to solvethe kinematical relation in terms of the Euler

parameters.

In addition to the integration of the generalizedcoordinates and

the update of the angular orientation, solution techniquesmust be devel-

oped to enforce the algebraicconstraint conditions for multibody equations

of motions formulated by incorporating Lagrangemultipliers. For this pur-

pose, techniqueshavebeen developedwhich eliminate excessor dependent

variablesnumerically by incorporating the singular value decomposition [78-

80], the coordinate partioning technique [81], the zero eigenvaluetheorem

[82], and other matrix procedures[83-85].Another approachapplies an im-

plicit integration algorithm to the generalizedcoordinatesof the constraint-

augmentedequations,and then solvesfor both the generalizedcoordinates

and the Lagrangemultipliers simultaneously [86-88]. However, in some in-

stances,numerical difficulties were encounteredfrom this discretization as

ill-conditioned matrices and artificially stiff problems resulted. Another si-

multaneoussolution procedureattempted to alleviate this problem by con-

structing a modified differential equation to model the constraint equations

[89-90]. Drawbacks to the procedure included a somewhat ad-hoc selec-

tion of certain factors that influence the accuracy of solutions and a lack

of a positive error control on the constraint violations. To addressthese

drawbacks,a techniquewhich implicitly integrates an alternative stabilized

companion differential equation for the constraint forces was proposed in

[91-92]. A principal feature of this method is that the errors committed in
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each constraint condition decaywith a characteristic time scale associated

with the constraint force. In addition, the method is conducive to an at-

tractive modular software implementation as the solution of the constraint

forces can be performed separatefrom the integrations of the generalized

coordinates. This stabilized constraint solution procedure is employed in

the present work.

The multibody dynamicssolution procedureadopted for the flexible

multibody system equations of motion is presented in detail in this chap-

ter. Section 4.2 will briefly describethe extensionof the beam formulation

into the equations of motion for multibody systems. Section 4.3 will dis-

cuss the application of integration procedures,both implicit and explicit,

in the context of finite rotation dynamics. To complete the multibody dy-

na.micsolution, Section 4.4 will present a unique procedure to update the

configuration orientation from the angular velocity solution and Section 4.5

will discussa separatecomputational procedure for the Lagrangemultipli-

ers. Finally, example problemsdemonstrating the softwarecapabilities are

presentedin Section 4.6, and conclusionsaregiven in Section 4.7.

4.2 Multibody System Equations

The present formulation of spatial beam dynamics can readily be

incorporated into a general multibody dynamics methodology. The discrete

equations of motion of an unconstrained flexible beam as derived in (3.3.12)

axe rewritten below as

m 0i {0/ {s/ /+ + = (3.3.12)

0 J d_ _Jw S b fb

where the subscript d representing nodal discretizations has been dropped.

It is recalled the beam nodal degrees of freedom (u,aJ) corresponding to
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the inertial coordinates of the beam neutral axis position and the body-

fixed coordinates of the cross-sectionalangular velocity. Thesedegreesof

freedomareof the samesenseasthoseof a rigid body, namely the inertially-

basedtranslational position of the center of massand the angular velocity

of a moving referenceframe orienting the body. Thus the equations of

motion (3.3.12)canequally well representa rigid body systemby setting the

internal force S equal to zero. The unconstrainedequations of an arbitrary

configuration of flexible beamsand rigid bodies can be written in terms of

one set of kinematical coordinates denoting both the nodal coordinates of

the flexible membersand the physical coordinatesof the rigid bodies.

It remains to augment the nonlinear algebraic equations which

model the contact conditions of the variousbodiesof the multibody system.

The Lagrange multiplier technique augmentstheseconstraint equations to

the unconstraineddifferential equationsof motion. Two types of constraint

conditions exist, holonomic or configuration constraints and nonholonomic

or motion constraints. A holonomicconstraint condition canbeexpressedas

adefinite relation betweenthe displacementcoordinates,whereasa nonholo-

nomic constraint condition can only be expressedasa relation between the

differentials of the coordinatesand not asa finite relation betweenthe coor-

dinates themselves[98]. A set of algebraicequationsrepresentingholonomic

constraint conditions betweenthe displacementcoordinatesu are written as

(_H ( u,t ) ---- 0 (4.2.1)

and the differential of these constraints is given as

5_ H -- ooH 5u ---- B H 5u - 0 (4.2.2)
Ou
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A set of non-integrable equations concerning nonholonomic constraint con-

ditions between the virtual displacements and rotations 6u, 6a are written

as

( u,6u,R,6o ) = BN

Given these constraint conditions, the virtual work expression (2.3.2) for the

unconstrained system is modified by the inclusion of the virtual work which

enforces the constraints through the Lagrange multiplier technique as [98]

6F z + 6F s + AH " 6_H -4- AN " 6e_N = 6F E "4- _F T

By incorporating the Lagrange multipliers A, the virtual displacements and

rotations of the generalized coordinates can be treated as independent vari-

ations. The equations of motion for constrained flexible multibody systems

are thus obtained as

m /i BT _ (4.2.4)
J

In the above equation, the notation contains both the holonomic and non-

holonomic constraints in the constraint force vector B T )t as

B = BN ' AN

and the right-hand side vector contains the remaining force-type terms as

-

To achieve a determined system of equations, the equations (4.2.4) must be

solved in conjunction with the constraint equations.

The B matrix in (4.2.4), termed the constraint Jacobian matrix, is

deduced from the kinematic relationship between the bodies of the system.
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To model _hese kinematic relations, conditions can be directly imposed on

the nodal degrees of freedom of two separate flexible beams, or between

a beam nodal degree of freedom and a rigid body modeling a portion of

a more complex joint. Typical Jacobian matrices modeling standard joints

used in multibody systems, such as universal, spherical, revolute, and trans-

lational joints, have been derived in [99]. Given the Jacobian matrices for

the joints and the beam connections, the models representing an arbitrary

assemblage of articulated flexible and rigid components can be constructed

in a systematic manner.

4.3 Integration of Generalized Coordinates

The solution of the generalized coordinates via the application of

numerical integration techniques to the multibody equations of motion are

discussed next. To present the application of integration methods to prob-

lems concerning nonlinear rotational dynamics, the equations of motion at

time t "+1 are written in terms of a generalized coordinate d which represents

both the displacement coordinates u and a suitable rotational parameteri-

zation as

M (dn+l,oIn+l,d n+l ) -}- S ( d n+l ) = f( t n+l ) (4.3.1)

where d "+1 = d ( t "+x ). In the above equation, .h1 represents both the

translational and rotational terms of the inertia operator as

5' represents the nonlinear internal force, and f represents the external force

including any constraint forces f = fext _ B T ,k. For the present analysis,
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the constraint forces are assumed to be given; a separate solution technique

in which the constraint forces may be obtained in conjunction with the

solution of the generalized coordinates is discussed in Section 4.5. Numerical

algorithms are implemented to advance the generalized coordinate solution

to a discrete point in time t n+l = t n + h given that the solution at the

past step in time t n has been found.

To solve equations of motion involving nonlinear rotational dynam-

ics, implicit integration techniques were first considered [32,34,36]. The

advantage of the implicit algorithms is the exceptional stability properties,

while the disadvantages include the implementation complexities inherently

associated with nonlinear problems. Most of the implicit methods that are

commonly used, i.e. the trapezoidal rule, Newmark, Houbolt, Wilson, and

others, are unconditionally stable for linear problems. However, to achieve

this unconditional stability, the solution of a simultaneous system of equa-

tions is required at each discrete time step where the dynamic solution is

sought. To apply implicit techniques to nonlinear problems, a linearization

of the equations with respect to the generalized displacement coordinates

is necessary. For the linearization within the context of finite rotations,

the rotational degrees of freedom are parameterized by the rotational vec-

tor defined in Section 3.2 [32]. Implicit integration methods are then used

to obtain the rotational vector and its time derivative at the discrete time

stations, after which the angular orientation and the angular velocity are

updated accordingly.

The alternative to the implicit formulas is the explicit formulas.

Explicit formulas are attractive from an implementation standpoint as the

solution can be achieved from simple vector operations. However, explicit
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algorithms retain stability only within a restricted step size between dis-

crete time stations. To use explicit methods within the context of finite

rotations, the angular velocity vector is first deduced via an integration of

the angular acceleration [44]. A suitable discretization of the Euler param-

eter representation of angular velocity is then used to update the rotational

orientation.

To demonstrate the above concepts, the application of the implicit

midpoint rule is discussed next in Section 4.3.1, while the explicit techniques

are discussed in Section 4.3.2.

4.3.1 Implicit Integration Techniques

A traditional algorithm to solve (4.3.1), termed the Newmark algo-

rithm, is given as

d"+ 1 = d n +

d"+1 = d" +

1 h2/_., h2 d.+1hd" + (_-_) +8

(I - "),)hd ''+I

where fl and 7 are free parameters whose choice results from a compromise

between computational simplicity, stability, and accuracy requirements. The

choice _/ = i , 1 yields the most accurate integration scheme
4

with unconditional stability. The resulting algorithm, termed the average

constant acceleration scheme or trapezoidal rule, can be rewritten as

h d" d"+1
d"+_ = d" + 3( + )

h d,.,+ 1
d"+_ = d" + -_(_i"+ )

A variation of this scheme, termed the midpoint rule, is given as

dn+ I = d n + h dn+½ (4.3.3a)

(4.3.3b)
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wherea computation of the velocitiesand accelerationsat a half time station

are evaluatedfrom the application of

h

d n+½ = d n -t- _d n+½ (4.3.4a)

dn+½ = dn + h _n+½ (4.3.4b)
2

to the equations of motion. By evaluating the velocities and accelerations

at the half time station for use in the full station displacement and velocity

computation as opposed to using a numerical average as seen in the trape-

zoidal rule, the midpoint algorithm yields a more accurate computational

scheme.

The midpoint solution is obtained by using the Newton-Rhapson

iteration procedure to solve the nonlinear residual equations

S ( d n+½ ) - fn+½r"+½ =_ M ( d"+½,dn+½,d "+½ ) +

= 0

To this end, a linearized set of equations

(4.3.5)

n+½ E - 0 r n+½ (4.3.6)
E(k+l) Ad(k+x) = -r (k+l) ' 0 d n+½

are solved at the k + 1 th iteration for the incremental displacements Ad

which are then used to update the solutions obtained at the k th iteration

via a discrete evaluation of

dn+(k+l) ---- dn+½(k) + _d (4.3.7)

until a convergence criterion is reached. The iterative procedure is started

with a prediction for d"+(10), usually taken to be d". The configuration

update (4.3.7) symbolically designates the vector update

u "+1 = u n+a (4.3.8)(k+a) (k) + Au
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for the translational displacements u and the rotational orientation update

p n+l  k+l) = ezp ( A6 T) R"+1(k) (4.3.9)

for the rotational vector parameterization O. The system angular velocity

must be updated from the rotational vector and its derivative in an appro-

priate manner via

w '*+1 = T (O (n+l)) 8 "+1

where the operator T ( O ) has been defined in 3.2.17.

To obtain the linear equations, the incremental solution matrix E

is derived from (4.3.5) and (4.3.6) as

0 M"+½ 0 d"+½ 0 Mn+½ 0 d n+½

E = Od,+ ½0d"+ ½ + cOd,,+ ½ cOd,.,+½ +

cOM n+ ½ cO S "+ ½

COdn+] + COd,+] (4.3.10)

where the terms

O d'-+½ 1 cOd-+½ 1 h
0d"+½ - 6-_ ' 0d"+½ - 6 ' 6 _- 2 (4.3.11)

are identified from the integration algorithm (4.3.3). The partial derivatives

of M and 5' represent coefficients of the first-order Taylor-series expansion

of the respective operators about a past equilibrium configuration at time

_n aS

M __ M n + COM Ad + _COM Ad + __cOM Ad (4.3.12)
cOd" cOd Od

COS

S _- S n + cO-.--_Ad (4.3.13)

where Ad -

where d =

d - d n. Derivation of the linear expansions in the context

( u,O ) requires techniques consistent with the particular
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translational and rotational update procedures of (4.3.8) and (4.3.9); the

derivations for the present beam formulation were presented in Section 2.5.

The consistent linearization of the internal force as derived in Section 2.5

and Section 3.5.1 is given as

{Au} (4.3.14)S _ S n "k [K G -b K M ] AO

where the geometric and material tangent stiffness matrices K G and K M are

deduced from a finite element discretization of (2.5.28) and (2.5.30). Like-

wise, the consistent linearization of the translational and rotational inertia

as derived in Section 2.5 is given as

291,, "2_ M,_ + m Au , (4.3.15)

Mj _ M_ + J AO + C GA(_ + K c AO (4.3.16)

where C a and K c represent discrete versions of the gyroscopic damping

and centrifugal stiffening matrices given by (2.5.14) and (2.5.15). From the

above lineaxizations, the incremental solution matrix is seen to be

o] oo] [oo]E= J +-5 0 + OK c

This solution matrix E is configuration dependent and thus must

be reformulated at least at the beginning of each time step for a modified

Newton technique, and at each iteration if a full Newton technique is to be

used. In addition, the updates of the configuration orientation and angular

velocity from the rotational vector parameterization require additional cum-

bersome computations. It is seen that the price to pay for the unconditional

stability of the implicit algorithm is the complexity of the computational
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scheme. For these reasons, explicit integration procedures have been chosen

for the present study.

4.3.2

where

Explicit Integration Techniques

The central difference explicit integration algorithm is written as

d"+½ = d"-½ + h d" (4.3.17a)

d n+' - d n -4- h d n+½ (4.3.17b)

_n+l = M-1 Q(dn+l, _,,+1) (4.3.17c)

f_ S _ 0

In this algorithm, the displacements ( d ) are obtained at the full time steps,

( ..., n, n + 1, n + 2,... ), while the velocities ( d ) are obtained at the half

1 1 3
timesteps,(.., n-- _ n + _ , n + •, , _, .. ). Given the integrated displacements

and velocities, the accelerations are obtained at the full time steps from the

equations of motion. The solutions are thus advanced to the next time step

using an extrapolation involving only the previous solution vectors, and the

implementation of explicit integration techniques to the nonlinear equations

of motion is straightforward.

To effect the explicit formulas within the context of finite rotations,

the algorithm (4.3.17a) is used to obtain a solution for the angular velocity.

The rotational orientation can then be deduced from the angular velocity

via a separate numerical procedure discussed in Section 4.4. However, com-

putational difficulties arise when (4.3.17a) with ( d =_ w ) is employed to

solve the rotational equations

J_3 + & Jw = f,_ (4.3.19)
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typical of multibody dynamics. From theseequations,it is seenthat in order

to compute d_'*, it is necessary to have con. However, due to the inherent

nature of the algorithm, only Wn-½ is available. To alleviate this problem,

the following approximations may be introduced:

w" __ w n-½ (4.3.20)

w" 1 .+½ ._!
= _(w + w : ) (4.3.21)

It will shown that the first approximation results in a computationally un-

stable algorithm, while the second approximation remains stable but does

not retain an explicit nature of computations. These difficulties motivated

the development of a modified central difference algorithm termed the two-

stage staggered procedure [44]. This algorithm is based on an interlaced

application of the central difference Mgorithm such that the displacements

and velocities are advanced one-half time step at a time. As standard of

explicit integration methods, the new algorithm remains stable under a re-

stricted step size and is based on vector operations. The stability analysis

of the algorithms follows.

4.3.2.1 Standard Central Difference Implementation

For a linearized stability analysis of the central difference algorithm

(4.3.17) with approximations (4.3.20) and (4.3.21) as applied to rotational

equations typical of multibody dynamics, the linearized equations of dy-

namics

J _O -b C G ;kO -b ( K M q- K a -b K C ) AO = fw - My q- Mj

as derived in Section 2.5.1 will be examined, the torque-free motion of a

single spherical rigid body in which the principal inertia terms are equal,
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IO + &6 = 0 (4.3.22)

This simple case is used to demonstrate important stability characteristics

as follows. The effects of the geometric, material, and centrifugal stiffnesses

K G, g M, and K c are the deduced from numerical experiments to asses the

numerical stability of flexible systems.

To first examine the effects of the combination (4.3.17) with (4.3.20)

on the linearized equations (4.3.22), we apply (4.3.17) with ( d =_ {9 ) to

(4.3.22) to yield

6 "+½ = o"-½ - h,Z,6"

0"+ 1 = O n + h6"+½

The approximation (4.3.20) with ( w =_

(4.3.23)

(4.3.24)

6 ) is then introduced to give

h d_ ] (_n-½ (4.3.25)

h (_n+½ (4.3.26)

To assess the stability characteristics, these equations are rewritten in the

form of a difference equation in terms of O as

(O n+l - 20" + O n-1 ) + h05(O n - O n-1 ) = 0. (4.3.27)

Computational stability is determined by seeking a nontrivial solution of

the form

O n+l = S O n = 8 20 n-x (4.3.28)

For a stable algorithm, it is necessary that

t sl < 1 (4.3.29)
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det ] (s - 1)2 -4- hw(s - 1) I = 0 (4.3.30)

In order to test the stability requirement (4.3.29) on the above equation,

the unit circle (4.3.29) is transformed into the entire left-half plane of the

z-domain via

s = 1 + z (4.3.31)
1 - z

such that (4.3.29) is equivalent to

Re(z) < 0 (4.3.32)

The characteristic equation (4.3.30) is evaluated by introducing (4.3.31),

and the z-polynomial equation

_ ( _ + _ + _ ) z_ - 2h_(_ + _ + _ ) z
(4.3.33)

+ [4 + h_(_ + _ + _)l = 0

results. This equation must be examined for possible unstable roots. For

this purpose, the Routh-Hurwitz stability criterion. [95] is employed. In

order for all of the roots of a second-order polynomial to lie in the stable

left-hand plane, each of the coefficients of the polynomial must be non-

negative. It is immediately seen that the coefficient of the z-term in the

above is always negative. Thus, for the present rigid body example, the

central difference algorithm becomes an unstable integration method when

the conventional velocity approximation is incorporated. This property is

witnessed in numerical simulations of flexible multibody systems when the

given procedure is used to integrate the equations of motion. For this reason,

this procedure is not suitable for multibody dynamics applications of the

form (4.3.19).
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The alternative velocity approximation (4.3.21)asimplementedinto

the central differencealgorithm (4.3.17)corrects this instability problem. In

analyzing this procedure, the substitution of (4.3.21) with ( w =_ 6 ) into

(4.3.23) gives the counterparts to (4.3.25-4.3.26) as

(I+
h h

5_)6"+½ = (z - _ )6"-½

0 "+1 = O" + h6 "+½

The equivalent difference equation for the above algorithm is

h 0.+1 0._ 1
(o "+1 - 20" + o n-1 ) + _( - ) =

The characteristic equation of the above

h

det I (_- 1) 2 + _(s 2 - 1) I = 0

is again transformed to the z-domain via (4.3.31).

polynomial equation becomes

0. (4.3.34)

(4.3.35)

In this case, the z-

_4 [ 16 z2 + h2 ( _ + _i + _ ) ] = o (4.3.36)

It is easily seen that for this case roots are either zero or purely imaginary. As

such, the central difference algorithm combined with the alternative velocity

approximation is unconditionally stable for the simple rigid body example.

For systems of flexible bodies, the stability limit of the above algorithm is

governed by the maximum elastic frequency of the beam component which

can be determined from the eigenvalues of the tangent stiffness matrices

K c and K M or by the centrifugal stiffness of the tangent mass K c. From

computational experiments, it has been seen that the stability limit closely

corresponds to that as predicted from the elastic frequencies of linear Tim-

oshenko beam stiffness matrices.
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The one drawback to the useof this last algorithm is that implicit

computations are required to determine the velocity when the equations of

motion contain velocity dependentforce terms other than diagonaldamping.

To showthis, the algorithm (4.3.17a)with ( d =_ w ) and the approximation

(4.3.21) are applied to the nonlinear equations of motion (4.3.19). The

following nonlinear residual equation

r-+½ h .n__ n___
j,o"+½ + -4 ( co"+½+ ,o _ ) j ( _m+½ + ,o _ )

- Jw"-½ - hfw = 0

(4.3.37)

results.

above equation for wn+½. For this case, the following iterative sequence

The Newton-Rhapson technique must be employed to solve the

E k Aw -" --rn'_

_on+l --. Oj nk+l k +

4.3.38a)

(4.3.38b)

results, and the solution matrix E is easily derived as

E

h (J3 -- J2) _3 a
- ¥ (Jx J3) _.'1_(J1 J3) ,_3 J_

n--!= (_"+½ +_o _)

The implicit computation is only necessary to obtain the angular velocities of

multibody system equations. The translational displacements and velocities

are found from the standard application of the central difference algorithm,

and the rotational orientation is found from the angular velocities with a

procedure to be discussed in Section 4.4. The necessity for the Newton-

Rhapson solution of the angular velocity can be eliminated by the following

algorithm.
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4.3.2.2 Modified Central Difference Implementation

An alternative algorithm has been derived to alleviate the problems

or complications resulting from the velocity approximations which must be

introduced when the central difference algorithm is used to integrate the

equations of motion for multibody systems. The troublesome velocity ap-

proximations can be eliminated by staggering the standard central difference

update such that the displacements and velocities are advanced one-half time

step at a time. The algorithm advances the solution to the time station t n+ ½

given the solutions of the two preceding time stations t"-½ and t n as

d n+½ = d"-½ + h d" (4.3.39a)

d "+½ = d"-½ + h d" (4.3.39b)

The algorithm is initiated for time t½ given initial conditions for time t o as

follows:

d½

d I

d½

h o.

= d° + sd°

= d° + h [t½

1 dl
= _( d° + )

The result is an explicit computation which remains stable under a restricted

stepsize.

The stabilizing effect of this algorithm is demonstrated with the

same procedure used in assessing the other algorithms. Application of

(4.3.39) to the linearized equations (4.3.22) yields the difference equation

( O r_q'l -- 20 n-1 -[- O n-3 ) -[- fl _ ( O n -- O n-2 ) = 0

where f_ = 2h. The associated characteristic equation is seen to be

detl( 2- 1) 5 + - 1)[ = 0



from which the z-domain stability polynomial is derived as

_(_ + _ + _)z' + [_- 2_(_ + _ + _)lz _

_(_ + _ + _) = 0

For a fourth-order polynomial of the form
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+

az 4 -t- bz 2 + c = 0

to guarantee stable roots, the conditions

_ _ _ b2 - 4ac > 0a>O, b> O, c>O,

must all be satisfied. This is accomplished by restricting the stepsize to be

1
h <

- ff _ + _ + _

for the specialized example problem. This linearized stability analysis con-

firms that the present two-stage explicit procedure in fact remains stable in

the presence of gyroscopic damping. The stable stepsize for flexible multi-

body applications is dictated by the above and the standard central differ-

ence limit

27r
h <

Wb

where Wb is the highest elastic frequency of the beam component. As verified

by computational experiments, the flexible stability limit can be approxi-

mated from the linear Timoshenko beam stiffness matrices.

This algorithm, termed the two-stage explicit procedure, can be ap-

plied to the nonlinear equations of motion in a straightforward manner;

(4.3.39a) with ( d _ /_ , w ) is used to integrate the translational and

angular velocities and (4.3.39b) with ( d :=¢, u ) is used to integrate the
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translational displacements. The algorithm advances the solution a half

time station at a time, and requires the evaluation of the right-hand side

terms Q twice each time step. Included in this evaluation is the computa-

tion of the internal force as discussed in Chapter III. The trade-off between

this algorithm and the standard central difference algorithm accompanied

with the velocity averaging, aside from the step-size restriction, is then a

consideration between the extra force evaluation per time step required of

the former versus the simultaneous equation solver required of the latter for

the iterative angular velocity solution procedure.

Thus concludes the discussion of the integration of the equations

of motion for multibody dynamics applications by the central difference

algorithm. The two stable algorithms which have been discussed, namely the

standard central difference algorithm including the velocity averaging and

the two-stage staggered explicit algorithm, were introduced for integration

of the translational displacements and velocities and the angular velocities

of multibody systems. As the rotational orientation parameters are not

directly integrable from the angular velocity vector, a procedure must be

developed to update the configuration orientation given the angula r velocity.

This is discussed next.

4.4 Rotational Orientation Update Procedure

The effective treatment of rotational quantities inherently involved

in the multibody system equations requires special consideration. As ad-

dressed in Section 4.3.1, implicit algorithms are based on an integration of

the displacements and a particular rotational parameterization as the pri-

mary variables. Given the rotational parameterization, usually taken to
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be the rotational vector, the configuration orientation is directly updated

via (4.3.9) or a suitable counterpart. Computationally, this can be accom-

plished using an exact functional expression for the matrix exponential [32],

using the Euler parameter representation of rotation matrices after convert-

ing the incremental rotational vector to Euler parameters [32], or using a

second-order approximation to the matrix exponential [50]. For the explicit

techniques, the rotational orientation must be deduced from the angular

velocity solution.

A classical rotational update procedure is based on a discrete ap-

proximation

R n+l _ exp(w* h)R n

= +

(4.4.1)

(4.4.2)

to the true solution

.tn+t

of the generating differential equation

_z( r ) dr ) R n

1_ = &T R (4.4.3)

' in (4.4.2)The evaluation of the angular velocity at time t n+ ½ with _3 =

was determined to provide the highest accuracy [96]. A related result ap-

plied the generalized midpoint rule to the generating kinematic differential

equation to yield [97]

l_n+ 1 _r'_

AR =

AR R n

[I- _w'h]-l[ r- + (1 -
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In order for AR. to remain an orthogonal rotation matrix, it was shown that

for the above expression the value/_

approximation can be inverted as

(I 6 -_ 62) (I+7)= i+

= ½ is needed. The rotational matrix

1 1 02
1 + (11o112/4)[0 + 5 ]

which is equivalent to the second-order Pade approximation of the matrix

exponential exp (()) . Therefore, a rotational update is obtained from a

true or approximate matrix exponentiation of (_ = _"+½ h.

An alternative procedure introduced here is based on the numerical

integration of the following Euler parameter representation of the generating

equation

=

in which A is given by

f /
q -- _ q0 _ (4.4.4)A(w) q ,

( )q

A(_) i[o
for the body-fixed angular velocity coordinate definitions. The configura-

tion orientation is obtained from a numerical time discretization of (4.4.4).

Among several possibilities, the approximation that satisfies the inherent

constraint condition

(t0 q0 + clTq = 0 (4.4.5)

in the discrete sense is the following trapezoidal formula

qn+l __ qn 1 qnh = A(wn+½)2 ( q"+_ + )

Due to the structure of A, the solution matrix can be analytically inverted

such that the discrete orientation update is accomplished according to

1 h h

q,+l = B [z + o:A(_"+½)] [I + _ A(_"+½)] q" (4.4.6)
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h 2

D = 1 + 7-(w + +

The final result is normalized to satisfy the Euler parameter constraint con-

dition.

The resulting update (4.4.6) involves only explicit computations and

is readily incorporated into the two-stage explicit integration procedure.

This Euler parameter-based solution procedure also interfaces with the in-

ternal force computational procedure presented in Chapter III. The concept

of an Euler parameter-based orientation update procedure was introduced in

[44] for rigid multibody dynamic systems. For the rigid cases, many implicit

integration algorithms as applied to (4.4.4) resulted in accurate numerical

simulations. For the extension to flexible systems, it was determined that

the particular algorithm (4.4.6) must be implemented to achieve a stable

simulation. This particular algorithm implicitly satisfies the constraint con-

dition (4.4.5), whereas alternative algorithms do not possess this property.

Thus, successful simulations of flexible systems are not necessarily immedi-

ately obtained from existing rigid-body dynamic solution procedures. The

present formulation, involving the internal force computation of Chapter

III, the generalized coordinate integrator of Section 4.3.2.2, and the orienta-

tion update procedure of the present section, leads to effective simulations

as demonstrated in Section 4.6. The next section discusses the solution

of the Lagrange multipliers which have been incorporated to augment the

constraint conditions to the differential equations of motion.
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4.5 Constraint Force Solution Procedure

A partitioned solution procedure has been employed to solve the

the Lagrange multipliers and the corresponding constraint forces separately

from the solution for the generalized coordinates. A stabilized constraint

force solution procedure originally developed for rigid multibody systems

in [91,92] was successfully extended to models incorporating the present

beam formulation. Again, the success of various existing constraint force

solution procedures developed from analyzing multirigid body systems is

not necessarily guaranteed for flexible multibody systems. For this reason,

a particular implementation of the basic formalism of [91,92] was determined

to yield effective simulations of flexible multibody systems.

To effect a partitioned solution of the constraints, a stabilized com-

panion differential equation for the constraint forces is formed by adopting

the penalty procedure. The penalty procedure uses the equations

AH _ _1 _H , '_N "- _I (_Y , e -_ 0 (4.5.1)

as the basic constraint conditions instead of (4.2.1)and (4.2.3),respectively.

From (4.2.2) and (4.2.3), both penalty equations can be written in the gen-

eral form,

A=IBd d _iL_ (4.5.2)
[, JuJ

where the notation includes both holonomic and nonholonomic constraints

with (4.2.5).

The numerical solution to the companion differential equation (4.5.2)

is obtained as follows. The constrained equations of motion (4.2.4) are in-

tegrated once using a general implicit integration algorithm given as

dn+l __ 6dn+l __. gn
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Two specific algorithms have been shown to work within the context of

flexible multibody systems; they are the trapezoidal rule ( gn --_ d,_ +

6d "n , 5 - _)and the forward Euler formula(gn _ (_,, 5 -- h). The

result of the integration

dn+l .._ 5 M-a(Q n+l - B T An+l ) + gn (4.5.3)

is substituted into (4.5.2), and a stabilized differential equation

eA n+_ + 5B M-1B r An+l = 5B M -1 Qn+l + B g'_ (4.5.4)

is obtained for the Lagrange multipliers. To obtain a discrete update of )_,

the same integration rule is applied to this equation as was used for the

generalized velocity. The trapezoidal rule

results in a constraint force update of the form

(eI + 52 BM-aB T)A n+l = (eI - 52 BM-IB T)A _

+ +' +

where

r_ +I = 52 BM-IQn+I

while the forward Euler formula

(4.5.5)

+ 5 B gd ' (4.5.6)

A"+' = An + 5_ "+'

gives

( e I + 6 2 BM-1B T ) An+_ : can q_ r_+l (4.5.7)
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These update formulas are easily adopted into the generalized co-

ordinate solvers discussed in the previous section. For each time step, in-

tegration of the generized coordinates is first performed. The solutions are

used to update the right-hand side vector Q, which is then input into the

Lagrange multiplier update module. The solution of the Lagrange multi-

pliers is then used to correct the right-hand side vector Q with the current

constraint forces B T A. The procedure can then be advanced to the next

time step.

4.6 Numerical Examples

The computational techniques, namely the staggered multibody dy-

namics solution procedure combining the generalized coordinate integrator

presented in Section 4.3.2, the orientation update procedure presented in

Section 4.4, and the constraint force solver presented in Section 4.5 with the

computational procedure for the beam internal force presented in Chapter

III, have been implemented into a Fortran 77 software package. The result

is a robust method which solves the present formulation of the equations of

motion of an arbitrary assemblage of flexible beams and rigid bodies. A dis-

tinct feature of the present work is the computational preservation of total

energy for undamped systems; this is obtained via the combined develop-

ments of the objective strain increment/stress update procedure presented

in Chapter III with the dynamic solution procedures of the present chap-

ter. In order to demonstrate the current software capabilities, the following

examples highlighting the flexible motion of the beam component are pre-

sented.

Ezample 4.1 Spin-up maneuver. The first example is included to
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verify the geometric stiffening phenomenaexhibited by a rotating beam

[15,23,30,33]. In this case,a pinned beam is subjected to the prescribed

angular rotation

6 [t 2 15 _ 2_rt
0(t) = + (cos - 1)] tad 0 < < 15 sec

(6t-45) tad t>15 8ec

about the Z axis at the pinned end as shown in Figure 4.1a. The time

history of the tip deflection relative to a reference frame coinciding with the

prescribed angular position and the time history of several configurations

of the beam are given in Figure 4.lb. An overall steady rotation of the

beam gives rise to a centrifugal force which is responsible for a change in the

bending stiffness that cannot be predicted using linear deformation theories.

After initial increasing tip deflections, the beam begins to stiffen as the

angular velocity increases due to the centrifugal inertia force. As the angular

velocity reaches a constant state, the beam then reaches a steady state phase

of small vibrations. The frequency of these vibrations is higher than those

of a nonrotating beam due to the geometric stiffening effect. This example

shows the capability of the nonlinear strain formulation to automatically

account for this geometric stiffening, and the results are comparable to those

presented in [33,100]. To reproduce these results with alternative methods

as the substructuring technique [30], a convergence analysis based on the

selection of mode shapes must be performed.

Example _.2 Planar mo_ion of pinned beam. This next example

demonstrates the combined large deformation and large rotation capabili-

ties of the present formulation. Two different simulations are presented in

which a pinned beam is subjected to the given initial velocity impulses shown
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in Figures 4.2a and 4.2c. The resulting time histories of several deformed

configurations due to the particular initial velocity impulse are shown in

Figures 4.2b and 4.2d. It is noted the versatility of the formulation in its

ability to capture the response to a variety of situations in which different

fundamental modes of the beam are excited. The approach avoids the dif-

ficulty of tailoring the selection of modes shapes of the flexible components

to the given problem at hand. The repeatability of the deformation shapes

through time is due to the invariance of the internal force computations

to the overall rigid motion. This property of computational objectivity is

further illustrated in Figures 4.2b and 4.2d in which the time history of the

strain, kinetic, and total energy is given over four revolutions of the motion.

The nature of the time integration and internal force algorithms are such

that the conservation of energy is retained computationally, as seen by the

fact that the total energy remains constant for a number of revolutions.

Ezample 4.3 Closed-loop chain in free flight. This example, also

analyzed in [100], demonstrates the capability of the present approach to

model the dynamics of flexible multibody systems. A closed-loop chain con-

sisting of four flexible links interconnected by hinges is subjected to a force

and a torque at one of the hinges to induce an overall tumbling motion of

the chain. The problem data is detailed in Figure 4.3a, and the sequence of

the motion is given in Figure 4.3b. The results coincide with those presented

in [100]. It is noted that the joint connection can easily be accounted for

from a finite element assemblage which leaves the rotational degrees of free-

dom free at the hinge location. The method was used to verify the results

obtained using the Lagrange multiplier solver of Section 4.5.

Ezample _..4 Spatial motion of pinned beam. This example presents
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the capability of the formulation to model the combined effect of spatial

rotations with large deformations. As in Example 4.2, two different simu-

lations are presented in which the pinned beam is subjected to an initial

velocity impulse in the horizontal X-Y plane as shown in Figures 4.4a and

4.4e. The beam is also subjected to a gravitational force acting along the

-Z axis. The history of the spatial rotation and deformation throughout

several revolutions are shown in Figures 4.4b - 4.4c and 4.4e - 4.4f. The

energy time histories for both simulations, as given in Figure 4.4g, again

verify the computational objectivity of the algorithm for spatial motions.

Example 4.5. Spatial mo_ion of double pendulum. This example

presents the motion of a spatial double pendulum. The double pendulum

is modeled with two beams; a spherical joint connects the last node of the

first beam to the first node of the second beam and also pins the first node

of the first beam. As shown in Figure 4.5a, the pendulum is subjected to a

gravity field in the vertical Z-direction and an initial velocity impulse in the

horizontal X-Y plane such that solely rigid motion is excited. The problem

is run for four cases of increasing beam flexibility as given in Figure 4.5a.

The spatial trajectories of the mass center of the second beam as projected

on the X-Y and X-Z planes for each of the beam flexibilities are given in

Figure 4.5b. The trajectory of the first case coincides exactly with a rigid

body solution to the problem, and the slight deviation of the trajectories

due to the increasing flexibility can be seen. The energy time histories for

each case given in Figures 4.5c - 4.5f verify the computational conservation

of energy. Again, the invariance of the internal force calculations in the

three dimensional environment is witnessed by the negligible strain energy

contribution within all of the flexible cases. The time integration of the
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spatial kinematics preservesthe balancebetween the kinetic and potential

energiesof the problem.

It is noted that as the beam becomes more flexible, increasing

amounts of strain energyslightly comeinto effect. Casesin which the beam

was made even more flexible wererun, and in thesecasesthe conservation

of energywasnot maintained. After closer examination, it wasdetermined

the straining of the beam had reachedunrealistic proportions beyond,the

elastic limit and the parameters were also unrealistic. An examination of

the energy history provides an immediate detection of potentially invalid

simulations.

Example 4.6. Spatial motion of double pendulum. As a final ex-

ample, the flexible double pendulum is given an initial velocity impulse to

excite deformation motion as well as the rigid motion as shown in Figure

4.6a. The first beam is given an impulse in the X-Y plane, while the second

beam is given an impulse in the X-Z plane. Note the material parameters

have been changed from the above example, and the gravity force has been

removed. The resulting time histories of several deformed configurations are

given in Figure 4.6b, and the energy time histories are given in Figure 4.6c.

The above example is included to show that the energy is still conserved for

computations involving spatial deformations of the double pendulum.

The inclusion of the energy history plots in some of the above ex-

amples is a significant detail. This tool provides an effective method for

analyzing the accuracy of the computational procedure. Numerous concep-

tual and computational 'bugs' were detected from examination of the energy

history. As such, it is believed this detail provides somewhat of a.n accu-

racy measure of the given simulation. The figures referred to in the above
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4.7 Concluding Remarks

A computational procedure suitable for the solution of equations of

motion for flexible multibody systems has been presented. The equations

of motion for an arbitrary assemblage of flexible beam and rigid body com-

ponents can be constructed in a systematic manner as a result of the beam

formulation presented in Chapter II. The dynamics are effectively treated

by the following developments in multibody dynamic solution procedures.

A two-stage modification of the central difference algorithm is presented to

integrate the translational coordinates and the angular velocity vector. This

staggered from of the central difference method was adopted for multibody

applications due to complications arising from the unavailability of the gen-

eralized velocity vector at the time step at which the acceleration vector is

evaluated. Given the solution to the angular velocity from the two-stage

algorithm, the angular orientation is then obtained from the application

of an implicit integration algorithm to the Euler parameter/angular veloc-

ity kinematical relation. The constraint conditions, which are augmented to

the formulation via Lagrange multipliers, are enforced via a technique which

implicitly integrates an alternative stabilized companion differential equa-

tion for the Lagrange multipliers. The present multibody dynamics solution

procedures are effectively combined with the present internal force compu-

tational procedure to achieve a computational preservation of total energy

for undamped systems as demonstrated via several numerical examples.

The next chapter presents the extension of the present methodology

to model the dynamics of deployment/retrieval of the flexible members.
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CHAPTER V

DEPLOYMENT DYNAMICS OF BEAM STRUCTURES

5.1 Introduction

The purpose of thischapter isto use the present spatialbeam formu-

lation to model the dynamics of the beam's deployment. Such a capability

for simulating the extrusion of beam-like structures can offera general util-

ity to study various practicalproblems such as tethers,space assembly, hot

rolling,and fluidjets.Much of the relevant literatureaddressing thistype of

problem has been motivated by space industry applications. Current space-

craft designs employ flexibledeployable appendages such as antennaes or

solar arrays. The appendages, which are compactly stored during a launch

phase, may be extended during the spacecraft'sattitude acquisitionphase.

As the relativelylong appendages tend to be deployed with relativelysmall

extension rates,the transient effectof deployment may be feltover a long

period of time and iscriticalto the mission success.

Initialworks investigated the effectof appendage deployment on

satellitecontrol by modeling the appendages as point masses [101]and rigid

bodies [102-103].The deployment of flexibleappendages from specificcon-

figurationsof a spinning spacecraftwas analyzed numerically in [104].More

general formulations for studying the effectof the deployment of beam-type

appendages on the attitude stabilityof a satelliteare given in [105-108],

and a similaranalysisfor studying the deployment of plate-likestructuresis

given in [109].The above analyses employ appropriate modal coordinates to

model the flexibledeformations. As such, the classicalvibrations approach
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which employs a linear combination of spatial modal functions weighted by

time-dependent generalized coordinates to model elastic deflections must be

altered to account for the time-dependent spatial domain. As this approach

may be somewhat questionable, an alternative method models the beam

as a series of elastically connected rigid links, and then considers the links

outside the rigid body at a given time in deriving equations of motion [110].

The equations of motion concerning the nonrotating dynamics of axially-

moving strings [111-116], beams[117], and nonlinear elastica [118] have been

formulated using an approach based on continuum mechanics. In the flavor

of these last works, the present chapter analyzes the nonrotating dynamics

of deployment.

An axially moving beam-like structure is somewhat similar to a flow

problem. The deployment may be thought of as a moving boundary problem

in which the spatial domain occupied by the continuum is a function of time.

Moving boundary problems are common in fluid dynamics, as typical heat

conduction or diffusion problems involve phase changes from solid, liquid,

or vapour states at an interface whose position is an unknown function of

time. The fluid dynamics community has generated a great deal of research

on numerical solution techniques for moving boundary problems which has

provided much insight for the present work.

A good account of numerical solution methods developed for moving

boundary problems in heat flow or diffusion is given in [119-120]. In dis-

cretizing the changing spatial domain encountered in these problems, either

a fixed or a variable grid method may be adopted. The fixed grid method

maintains a constant spatial grid sizing throughout the simulation. When

the nodes are fixed in space, the location of the moving boundary does
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not necessarily coincide with a node. Special numerical techniques must

then be incorporated to locate the position and model the physics of the

boundary [121-122]. Alternative approaches avoid these complications aris-

ing from the unequal grid size near the moving boundary. In one method,

the unequal interval is transferred to a more tractable region by moving

the whole uniform grid system with the velocity of the moving boundary

[123]o Another method varies the time step such that the boundary moves

the distance of one fixed space mesh during that time [124-126]. Alter-

natively, a deforming numerical grid which maintains an equal number of

variable length space intervals may be employed to solve moving boundary

problems [127]. This approach has a greater intuitive appeal as the moving

boundary always corresponds to a specific nodal point. When employing

this approach, the grid deformation must theoretically be accounted for in

a proper manner. Within the context of the finite element method, the

grid deformation can be accounted for by making the finite element basis

functions implicit functions of time [128]. In this case, the time derivatives

of the approximate displacements acquire additional convective-type terms

within dynamic analyses.

For dynamic analyses, space-time finite elements can be employed

to formulate a time integration algorithm which accounts for the grid de-

formation within a variable grid method. Previous works in the literature

have used this approach with success to solve both parabolic and hyperbolic

problems such as the one and two-dimensional heat equation of the Stefan

ice/water interface problem [129-130], the Euler equations of compressible

flow [131], and the advection-diffusion problem [132]. To solve flow prob-

lems with time-varying boundaries in this manner, space-time variational
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statements must first be defined. The simplest way to get the weak form

of the governing equations is through the standard Galerkin finite element

method [133-135]. However, the straightforward application of the Galerkin

principle may result in a coupling of all the discrete steps in the time domain

in the same manner that spatial nodal variables become coupled through

a standard spatial finite element discretization. Obviously, this is highly

undesirable for an efficient transient integration algorithm. To alleviate this

problem, the discontinuous Galerkin method in time has been applied to

space-time finite element formulations [136-138]. A more attractive method

is to use Hamilton's Law as the variational source for finite element dis-

cretization procedures in the time domain [139-141]. In addition to leading

to a step-by-step integration procedure, the use of a true variational law

of mechanics as that of Hamiltonian as opposed to constructed principles

as the general weighted residual methods provides a physical basis for the

discretization procedure [139].

Given the above overview, the large deformation beam formulation

presented in Chapter II is extended to model the axial deployment of the

beam. The deployment is modeled by referring the motion variables to the

changing spatial configuration of an undeformed beam extending with the

prescribed deployment speed. Deforming finite elements are used to dis-

cretize this changing spatial volume, and the internal force formulation of

Chapter II and computation of Chapter III are retained. Due to the chang-

ing spatial reference for the dynamic variables, the inertia operator acquires

terms representing the convective rate of change of the variable in addition

to those representing the local rate of change of the variable. To simplify

the numerical treatment of the inertia operator, a Hamiltonian variational
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formulation is introduced as the basis for a space-time finite element dis-

cretization procedure. This space-time discretization of the Hamiltonian

formulation results in a transient integration scheme which accounts for the

deforming spatial grid. In this manner, an effective computational method

has been developed to model the deployment of present beam formulation.

The rest of the chapter will be organized as follows. Section 5.2

presents the variable spatial grid description of the beam kinematics. The

coupling between the convective effects and the temporal differentiation

within the inertia operator are discussed in detail. The Hamiltonian for-

mulation of the moving boundary value problem is derived in Section 5.3.

The space-time discretization of the resulting Hamiltonian is carried out in

Section 5.4, and care is exercised to annihilate unwanted spurious mecha-

nisms in the discrete equations of motion. The computer implementation of

the present approach and preliminary results on a planar inverse-spaghetti

problems is illustrated in Section 5.5.

5.2 Deployment Kinematics

The problem under consideration, as shown below in Figure 5.1, is

the axial extension of a beam-like structure from a stationary guide. As the

beam extends from the guide, the spatial volume which deforms is constantly

changing. To model this effect, the beam can be discretized by a growing

number of finite elements of a fixed length or by an equal number of finite

elements growing in length. These two approaches are illustrated in Figure

5.2. It is seen that in the first approach, a special element of varying length

must be used at either the boundary or the free end. This inconsistency

is avoided in the second approach as the grid points are equally spaced.
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Figure 5.1 Axial deployment subject to gravity.

Conceptually, this variable or moving grid approach is more appealing, and

it can readily be adopted into the present beam formulation. Theoretically

and computationally, it remains to properly account for the effects of grid

deformation. To this end, the kinematics of the beam deployment are de-

scribed as follows.

The present formulation is based on the use of an inertial reference

for the beam kinematics. As detailed in Chapter II, the beam configuration

is completely characterized using a position vector locating the neutral axis

of the beam from the inertial origin and an additional reference frame which

orients the cross-section from the inertial frame. To retain this concept and

model the deployment of the beam, the displacement variables locating the
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neutral axis are measured from a set of moving nodes which represent the

position of a phantom beam rigidly moving from the guide in a prescribed

manner. As shown in below in Figure 5.3,

Figure 5.3 Deployment kinematics.

the position vector r locating an arbitrary point within the changing spatial

configuration occupied by the beam is described as

}T /_Tr = { X'(t) + u e + b (5.2.1)

In the above equation, ._'(t) represents time-dependent inertial coordinates

of the phantom beam neutral axis. In reference to a particular moving node

i, the position vector is given as

}T _Tri = {._7i(t) + ui e + bi (5.2.2)

The location of the moving reference nodes )(i(t) are determined by spa-

tially dividing the length corresponding to a rigid deployment with an equal

number of elements. If the prescribed deployment speed is a constant value
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of V, the total length of the rigid phantom beam at time t is V t . The

moving reference nodes are equally positioned between the free end and the

boundary, and the position and velocity of the nodes can be prescribed as

Xi (t) - (i - 1) Vt (5.2.3)
nele

d._i _ V/ (t) _ (i - 1) V (5.2.4)
dt - nele

where nele represents the fixed number of deforming elements. The kine-

matic relation (5.2.2) is thus an Eulerian description as material points of

the beam are not specifically tracked.

As the displacement variables are measured from a moving reference,

the material time derivative definition must be introduced to obtain the

velocities and accelerations of a material particle. The definition of the

material time derivative is given as [45]

D 0 0
(5.2.5)

Dt -: Ot + vJ Oxj

where xj are the inertial coordinates of a spatial point within the deformed

beam configuration, and vj are the instantaneous velocity coordinates at

that point. For use within the present beam formulation, this definition

must be transformed such that the spatial derivative is taken with respect

to the convected coordinates _i. This convected coordinate definition is

given as

D 0 0

Dt - _ + v1 Tij 0_i (5.2.6)

where the rotational tensor Tij maps the inertial coordinates to the con-

vected coordinates. It is recalled that the convected reference frame was

introduced in Chapter II to obtain a more physically effective deformation
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description. As the internal force is computed from the convectedspatial

coordinates, the transformation (5.2.6) is introduced to achievea consistent

computation of the inertia force. For the particular Eulerian description

(5.2.1), the appropriate material time derivative becomes

D 0 0

Dt - Ot + V*--O_ (5.2.7)

V* = T11 vl + T12 v2 + T13 v3 (5.2.8)

as the translational variables and the cross-section orientation are solely

functions of the neutral-axis length coordinate _. To complete this defini-

tion, an expression for the instantaneous velocity vi is obtained from the

kinematic definition (5.2.2). From this definition, the spatial coordinates

are given as

xi = f(i + ui + Rjigj (5.2.9)

where Rji is the rotational tensor corresponding to the cross-section orien-

tation. The instantaneous velocity of this point becomes

vi = _ + i_i + Rji &ik gk (5.2.10)

f'i = dRi Oui
dt ' /q = 0t (5.2.11)

From this expression, the velocity V* of (5.2.8) can be written as

v" = + o'Te (5.2.12)

where

= +

(_,T ---- {0 , Sll 023 - $31 t.¢l , $21 _..J1 - Sll a22 }
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correspond to the translational and rotational contributions respectively as

derived from (5.2.8) and (5.2.10).

The velocity and acceleration of a material particle can now be

derived by applying (5.2.6) to the Eulerian description (5.2.1). For rotating

coordinate systems, the definitions of the time and space derivatives for the

body fixed components of a given vector are given as

0 e 0 b dR RT (5.2.13)
_= _+_' _- d_

0 e 0 b dR RT-- = -- + k k _ (5.2.14)
a_ a_ ' d_

The velocity of a material particle thus becomes

Dr r

-- e T | (Y + u) +
Dt k

+
+

g (5.2.15)

and likewise the acceleration

D 2 r = eT [
Dt 2

O_u + 2V* O_2u + V *_ O+2u
Ot 2 Ot O_ O_2

0 _ u OV* V* OV* ]o_ ( _ + o--4-) +
ob _._J

+ _& +
&

ob_ ob_;

v'(-b_- + o_ +_+_) +
obk

v" (--_- + _) +
OV* OV* 1

0-7-_ + v* o--( _ ] e

+

(5.2.16)

The equations of motion as derived from the stated beam kinematic descrip-

tion will be discussed next.
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5.3 Hamiltonian Equations of Motion

The beam formulation presented in Chapter II is based on the well-

known Cauchy equilibrium equations of motion for a solid continuum. The

principal of virtual work, which is a spatial variational form of the partial

differential equations of motion, is given as

6F z + 6F s = 6F E + 6F T (5.3.1)

where the inertia operator 6F I, the internal force operator 6F s, the exter-

nal force operator 6F E, and the traction operator 6F T are identified from

(2.3.1). Due to the beam kinematic assumptions, the traction operator is

identically equal to zero and will henceforth be neglected. This variational

form provides a basis for the implementation of spatial finite element ap-

proximation methods to lead the partial differential equations of motion to

a set of ordinary differential equations in time. Standard numerical integra-

tion techniques can then be employed to obtain a solution to the equations

at discrete time levels.

For the deployment problem, a variational form of the temporal op-

erators is considered such that a finite element discretization in time can be

applied simultaneously with the discretization in space. As the principle of

virtual work is used as the basis for the spatial discretization, Hamilton's

Law is used as a variational source for this space-time finite element dis-

cretization. Hamilton's law is deduced from an integration of the principle

of virtual work over an arbitrary time interval given as [98]

/: /: /tl6F I dt + 6F s dt = 6F E dt (5.3.2)
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An integration by parts is then performed on the inertia term

/?/,t= 6F t dt = p 7:i 6ri dr9 dt (5.3.3)

to lead the equation (5°3.2) to the form

/[2 _o { p _'i '_" i -- O'ij '_ij - 6rifi } dtg dt =

A well-known form of the above variational statement is obtained by requir-

ing that the arbitrary virtual changes 6ri vanish at the time limits tl and

t2 as

_,-i(q ) = 6_'i(t2 ) = 0

With this assumption, the boundary term on the right-hand side of (5.3.4)

can then be neglected such that

[2 ( 6T + 517V ) dt = 0

where T represents the kinetic energy and 61_ represents the virtual work of

the applied and internal forces. This interpretation is known as Hamilton's

principle. In general though, one can treat ri( tl ) and ri( t_ ) as undeter-

mined quantities. The distinction between Hamilton's Law and Hamilton's

principle is thus whether these temporal boundary terms are retained or

neglected.

This distinction between Hamilton's Law and Hamilton's principle

becomes important in the numerical approximation of the variational state-

ments. Although the boundary term is often seen as irrelevant in deriving

the equations of motion, it is important for numerical solution techniques.
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The boundary term must be retained to achieve correct approximate solu-

tions from a Hamiltonian variational statement. Early works which imple-

mented a space-time discretization of Hamilton's principle resulted in an

inconsistent treatment of initial data [133-135,142]. In contrast, the initial

conditions can be properly incorporated into the variational formulation of

Hamilton's Law. Additionally, when Hamilton's Law is used as the varia-

tional statement, Co continuous approximating functions may be employed

such that an attractive step-by-step integration procedure results [139-140].

To interpret the well-known Hamilton's Law for the present deploy-

ment problem, an integration by parts must be performed on the inertia

term

6F z dt = p _ 6ri dg dt
t (t)

which contains the material time derivative definition (5.2.6).

(5.3.5)

The proper

integral is given by the Reynolds transport theorem as [45]

m pFdt9 = p--_-t--dO ,
Dt (t) (t)

where p i_ the mass density and F is an arbitrary function of the material.

From this theorem, an integration by parts can be performed on (5.3.5) to

yield

12 6 F z D r,

p dv_ dt
(t) Dt Dt

(5.3.6)

The interpretation of Hamilton's Law for Eulerian continuum formulations

interchange of the time derivative and a time dependent spatial volume



is thus given as

ftt2 f_ DriD 5ri{ p - aij 5¢ij
1 (t) Dt Dt

(t) Dt
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5rifi } dO dt =

The above variational statement provides an attractive source for a

concurrent space-time discretization procedure for the present deployment

problem. The complex acceleration expression (5.2.16) need not be explicitly

considered as the temporal weak form requires only the velocity expressions.

In addition, consistency with the internal force operator is achieved as the

spatial derivatives contained within the inertia are reduced to first order.

Finally, the deforming spatial grid which has been introduced to model the

changing spatial volume occupied by the beam will be taken into account

automatically.

To complete the formulation, an expression for the inertia operator

is derived by incorporating the kinematic expressions into (5.3.6); the details

of the derivation are given in Appendix A. By neglecting coupling terms

caused by the rotational contribution {_.r e within the velocity V* given in

(5.2.12), the interior term of the inertia operator becomes

ft t_ f_ DriD 5ri5FZ_- P-D7 Dr dO dt
1

= + u m at +
1

In this expression,

rn = fa pdA , J = fA P_TdA

]1"D 5ri dr9 (5.3.7)
Dt . tl
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represents the beam mass per unit length and cross-sectional inertia prop-

erties, and

0 6a

Ot

0 8a
,5t¢ = + _ 6a

represent the angular velocity and curvature variations, respectively. Like-

wise, the resulting expression for the boundary term of the inertia operator

becomes

j/ D ri t2

These expressions (5.3.8) and (5.3.9) are much more tractable to handle

numerically than the acceleration term given earlier in (5.2.16).

To complete (5.3.7), the nonlinear internal force operator, as derived

in Chapter II, is given as

/?/, {}_F s = ( _uT _aT} [ B ]T N_ d_ dt

and likewise the external force operator is given as

/,2/,_F E = _ri fi d_ dt
t (t)

(5.3.10)

(5.3.11)

5.4 Space-Time Discretization

In conventional finite element models, the displacement field u is

approximated with a linear combination of spatial interpolation functions
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and time-dependent nodal displacements as given by (3.3.1). This concept

can be modified to account for mesh deformation by making the spatial in-

terpolation an implicit function of time. Thus when node motion is allowed,

the appropriate spatial approximation is given as

ripe

u( _,t ) ____ N1 (_(t) ) u, (t) (5.4.1)
I----1

For a simultaneous discretization in time, the nodal displacements axe ap-

proximated in the same manner as a linear combination of temporal inter-

polation functions and nodal values at discrete time steps as

ripe

ul (0 -- _ Nj (t) uI" (5.4.2)
J----1

From (5.4.1) and (5.4.2), the space-time discretization is given as

ripe ripe

u _-- _ = Z _ N1 (_) Nj(t) u, 'J (5.4.3)
1=1 J--1

In this expression, the value ul t'_ corresponds to the value of u at the spatial

node I and time tj. The nodal value is thus the displacement with respect

to the node X!(tj) whose position is prescribed throughout the simulation

as a function of the deployment speed.

5.4.1 Discrete Equations of Motion

The space-time discretizations of the inertia, internal force, and ex-

ternal force operators within Hamilton's Law (5.3.7) are given as follows.

The following analysis is specialized to the case of planar motion where the

appropriate degrees of freedom become

U _- { 721,U2,0 }
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corresponding to two translational displacements which locate the neutral

axis and a single angle of rotation which orients the body-fixed reference

frame. These three degrees of freedom can be treated in the same manner.

The inertia expression reduces to the form

_F/ = D _tt T D u (5.4.4)
( t) "D--'t M Dt

D 6u T t,6F: = [ (t, D' M 6u d_ ] t2 (5.4.5)

where

M = Diag{m, m, J}

This expression is evaluated by substituting the approximations

Dfi "P" "P" [ dNj(t) + ft. Nj(t) dNj (e) ]Dt - _ _ N, (e) at _e u,"
I=1 J=l

DDt6a- _"'"E"P"[NI (e) aNjat(t) + _. _j (t) e Nj_e(e) ] _/_
I=1 J=l

into (5.4.4) and (5.4.5). The result for the interior term is written as

_F i I ..- { 6ua 6ut2 } A21 A22 u t2

where the spatial element kernels constituting the A matrices are given in

Appendix B. Likewise, the boundary terms of the inertia operator, evaluated

as

6F bI = / D fi(t2)(t2) -_

is approximated using

• 6fi(t2) de - / D fi(tl).6fi(t_) de(t,) Dt

ripe

Dfi(tl,t_) _ Z Nj(e) uj" q,t= + -h'""' dNj(e) u t,,t=
Dt de J

J=l

ripe

6fi(tx,t2) = Z Ys (e) 6uJ ''t2
J=l
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u = (ul,u2,e)

6*" = Tl1(71 + 61'2 ) + T1_(72 + _,2)

The discrete form of (5.4.5) is given as

_F_' = {6utt_ut2}{[ BIO

0

oB2 _t2 ) +

o /ut ' } (5.4.7)

where the spatial kernels B1, B2, C1, and C2 are also given in Appendix B.

The discrete form of the linear internal force operator is given as

/,? +++/6F s dt = { _ut_ _ut2 } 4 K K u t_

where K is the linear Timoshenko beam stiffness matrix and h is the time

step between tl and t2. This linear discretization is presented to illustrate

the general flow of the algorithm; the extension of the algorithm incorpo-

rating the nonlinear internal force is discussed in Section 5.4.3. Finally, the

external force is discretized as

5F E dt = { 6utt 5ut2 ) 5 ftt + ft,

In all the above discretizations, the double integration over the

changing spatial domain and the arbitrary time interval has been performed

using reduced integration methods. The reduced integration methods were

first chosen as a similar application implementing a space-time discretization

of Hamilton's Law concluded that the reduced integration methods resulted

in unconditional stability of the transient integration algorithm. In con-

trast, the full integration methods resulted in a conditional stability of the
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transient integration algorithm [141]. A discreteFourier analysis,presented

in Section 5.4.2, concludesthat the reduced integration gives a consistent

approximation of the original partial differential equationsof motion.

From the discretizations (5.4.6 - 5.4.9), the transient integration

algorithm is given asfollows. The discrete equationsof motion arising from

the space-timeprocedureare written as

A21 A22 u t' 4 K K u t2 = frh_ 2

(5.4.10)

= ( f,, + f,2 ) (5.4.11)
frh, t' B2 i_t" + C2 u t' 2 ( ft' + ft2 )

for the linear system. Given the initial conditions u tl and fi,_, the first block

of the above equations can be solved for u t2 as

h h

{ A12 - _ g } u t' = - { All -- _- I( } u t_ + frhs t' (5.4.12)

It Can be shown from the explicit expression of A12 given in Appendix B

that the left-hand side matrix in the above equation is positive definite.

Thus from a solution to (5.4.12) for u t2, the second block equation can then

be solved for t_t2 as

h
hi( -C2 } ut: + ( f,, + f,2 ) .h K}utl + {A22 4B2 i*t2 = { A21- "_ -- "_

Again, it can be seen that B2 is also positive definite. These solutions u t2

and t_t2 form the initial conditions for the next time step, and thus the time

finite elements result in a step-by-step integration formula.
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5.4.2 Consistency Analysis

A discrete Fourier analysis provides a mechanism for examining the

consistency of the discrete equations of motion with respect to the origi-

nal partial differential equations [143-144]. The strong form of the partial

differential equations of motion are given as

02 if2 02 u02 u 4- 2V" u 4- - 0 (5.4.13)
Ot2 OzOt Oz2

As the main desire is to analyze the characteristics of the inertia operator,

the following approximations have been made in the above equation. The

convective velocity V* has been approximated by the deployment speed V,

and only axial vibrations have been retained such that 1)'2 = 1? 2 + c2

where c2 represents the elastic wave speed E / p.

The traditional Fourier analysis seeks a general harmonic wave so-

lution to the above equation of the form

u = Uo e i( wt - kx ) (5.4.14)

where w is the circular frequency, k the wave number, and i the imaginary

number i = xfL"l. The substitution of (5.4.14) into (5.4.13) yields the

characteristic equation

{ -w 2 4- 2 Vkw - _,2 k 2 } Uo = 0 (5.4.15)

The fundamental relation between the frequency and the wave number as

dictated by this characteristic equation is thus given by

_" = ( ¢+ _* ) k" (5.4.16)
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Vh ch
V* C*

k* = kh , e g

have been introduced for an arbitrary step-size h and element length g,

respectively.

For the discrete equations of motion, the difference equations are

obtained by assembling the spatial nodes of two interior beam elements

with two sequential steps in time. The spatial nodes, designated as j -

1 , j , j + 1, are spaced a distance e apart, and the time nodes, designated

ti
as i - 1, i, i + 1, are spaced a time step of h apart such that uj ---* uj,i.

For the finite element equations resulting from the reduced integration of

the variational equations, the difference equations become

4

4e

e

4--£ [ Uj+l'i+l -- 2 Uj+I, i "_- Uj+l,i_ 1 "t- 2 uj, i+l - 4 U j, i "_-

2 uj, i-1 + U/-z,i+l - 2 uj- 1,i + Uj_l,i_ 1 ] dr-

[ Uj+l,i+l -- ttj--l,i+l -- Uj+l,i--1 -{- Uj-l,i+l ] +

[ Ujq.l,iq- 1 -- 2 Uj,i+ 1 "t- ltj--l,iq-1 "_- 2 U j+l, i -- 4 U j, i q-

2 uj-l,i + uj+l,i-1 - 2 uj,i-1 + uj-l,i-_ ]

= 0 (5.4.17)

Likewise, the difference equations for a fully integrated version become

2f"
4

h__
6e

Uj+l,i+l - 4 Uj+l, i nt- Uj+l,i_ 1 nt- 2 uj,i+ 1 - 8 u j, i -t-

2u./,i_l + uj-l,i+l - 4 uj- l,i + uj-l,i-1 ] +

[ ILj"t-l,i't-1 -- Uj_l,i.t. 1 -- Uj_t_l,i_ 1 "_ Uj_l,i.t_ 1 ] "4-

[ uj+l,i+l - 4 uj,i+l + uj-l,i+_ + 2 Uj+l,i - 8 uj,i +
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- 4 uj,i_ 1 nt- Uj_l,i_ 1 ]

= 0 (5.4.18)

To compare the characteristics of the difference equations to the

characteristics of the continuum equation given in (5.4.15), a harmonic so-

lution to the difference equations of the form

it J, i = tt ° ei ( wt - k_ )

is sought. By substituting the harmonic solution into the difference equa-

tions (5.4.17) and (5.4.18), the characteristic equations of the discrete cases

become

_2

_ _ _ } e_{1 4
sin ke sin wh

- 2V-
h

h 2
t_ 2 1 F_ __.+ ¢_{1 4 1 = 0 (5.4.19)

for the reduced integration version (5.4.17) and

2

{5( 1
2

e {5(

F _:2 + 31_I72h2- ¥ e-a-}_ -
h 2 1 l 2

_ __ t_2 + } t_ 21 4 3 h 2 _2

4 1 _2

+ 5{_z+Tr } = o

sin kg sinwh
2V

h

(5.4.2o)

for the fully integrated version (5.4.18) where

sin -_ sin w__!e2
= _ -

t ' w
-2

for both cases.

It is now observed from a careful comparison of the characteris-

tic equation for the continuum case (5.4.15) to those for the discrete cases
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(5.4.19)and (5.4.20), the latter correspondingto the full integration scheme

results in an inconsistent representation. Spurious mechanismsemanate

from nonphysical rigid-body motions. The possibility of introducing spuri-

ousmechanismby the precedingfinite element discretization can be deter-

mined from the solution of the aboveequations with _ -- 0. The reduced

integration characteristic equation (5.4.19) reducesto

_2 = 0 =_ k - 27rn
n = 0,1,2,..- (5.4.21)

for this analysis. As the highest admissible deformation mode shape admit-

ted by linear shape functions is 7r / g, the only potential solution of (5.4.19)

is k = 0. This solution coincides with the correct rigid-body mode solution

of the continuum characteristic equation (5.4.16). The latter case of full

g2 _2 4 1 _2
+ -}

integration leads to

1
= 0

which does not admit a physically valid solution. It is also noted that the

representation (5.4.20) does not converge in the limit to the true character-

istic equation (5.4.15), whereas the representation (5.4.19) does have this

property. Finally, the dispersion relation of the reduced integration differ-

ence equations can be derived as

W* k*

-- = --c*) tan-_-tan 2 (V*+

to be compared to the true dispersion relation (5.4.16). This is done below in

Figure 5.4 where it is seen the approximation is valid for the range k* < _.

The reduced integration version is thus the consistent discretization of the

variational equations of motion.
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Figure 5.4 Dispersion relations.

5.4.3 Nonlinear Solution Strategy

To include the nonlinear force term within the procedure, the equa-

tions

[ ]{}All A12 u tt [ B a d_9 dt = t2
A_I A22 ut2 - (t) f,-hs

ave solved via the Newton-Rhapson iteration technique. The displacement

u t2 is obtained first by iteratively solving a nonlinear version of (5.4.10). To



this end, a solution to the following residual equation

r = All U tl + A12 u t2 - [ B a dO dt

= 0

is obtained by iterating about the linearized set of equations
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E(k+l) Au '2 (k+l) = --r(k+l) (5.4.23)

The above equations are solved at the (k + 1) ¢h iteration for incremental

displacements Au t2 which update the solutions obtained at the k th iteration

via

t2
u(k+l ) = U(k) t2 + Au t2

The iterative procedure is started with u(0) t2

a convergence criterion is reached.

(5.4.23) is obtained from (5.4.22) as

= u .1 and continued until

The solution matrix E introduced in

h

E = A12 4 ( KG + KM )

where K G and K M correspond to the material and geometric stiffness ma-

trices of the nonlinear internal force.

To complete the procedure, an evaluation of the time integral of

the internal force within the residual (5.4.22) is necessary. Using a reduced

integration interpretation, this is given as

_Fs d_ = { _," _." } _ S ( _( ." + ,," ) )

where the internal force is evaluated using an average of the displacements

between the two time steps.
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It is important to note that in the moving node formulation the

displacement coordinates u n and u n+l are defined with respect to different

spatial grids; the coordinates u n are defined from the nodes X'_ whereas

the coordinates u n+l are defined from the nodes _n+l. Therefore, prior

to the computation of the displacement average for the evaluation of the

internal force, the coordinates u n must be extrapolated to the grid _,,+1.

In addition, the internal force computation discussed in Chapter III was

based on an incremental procedure in which the current stress state was

obtained by updating a past stress state with an increment of stress. This

stress increment is a function of the displacement increment Au between a

current configuration u and the past configuration u n as

/_U -- U nq-1 m ?An

To incorporate this concept within the moving node formulation, the dis-

placement increment must be also be computed from variables defined on a

consistent grid.

To this end, an extrapolation of the variables u n to the grid _,_+1

must be defined in a manner consistent with the present internal force for-

mulation. The stress update remains unaffected by the extrapolation of

u '_ if the constant elemental strain states of the past configuration are rep-

resented without alteration. A consistent extrapolation thus must retain

the orientation of the elemental convected reference frames. By retaining

the convected reference frame orientation as determined from the original

translational coordinates x n for the extrapolated displacements x n r, the

deformed position of the beam neutral axis can equivalently be described
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176

z" = X" + u"

X n t _ .f( n-{-1 .._ u n t

Figure 5.5 below illuminates the above concept. For a given element

bounded by nodes i and i + 1, the al axis of the convected reference frame

is determined from

Xi+ 1 _ X i

- xill

t ...................

"N
N.

I -°°°° i

Figure 5.5 Extrapolation of displacement coordinates.

To retain the orientation of the element convected frame, the extrapolations

must be such that

! !
Xi+ 1 -- X i Xi+ 1 -- X i

= (5.4.24)
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Given a constant deployment velocity V, the nodal positions X'i are auto-

matically prescribed such that the length between two nodes

Vt
gx = Xi+1 - Xi -

nele

is a function of time as given by (5.2.3). It is easily seen that, starting from

the first node which remains fixed at the boundary of the guide as

2_ = 2;'+' = 2_ ,

the rest of the nodes for i = 2, nele + 1 can be generated as

XI -Ii+1 -- X i "_- _lx

e}
= -_ + _(_i+1- £i)

If the extrapolated displacements are generated from previous values in the

same sequential manner for nodes i = 2, nele + 1 as

U_ _ U 1

, , e_
Ui+l -- Ui 21- _X ( _i-kl -- _i ) ,

it is easily shown the condition (5.4.24) is satisfied. The position of the

deformed neutral axis and thus the strain state is unaltered by the extrap-

olation. The rotational variables are extrapolated in the same manner such

that a constant curvature state is retained without alteration. These extrap-

olations are performed on variables prior to an internal stiffness computation

and are otherwise not a part of the integration algorithm itself.
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5.5 Results

The computational techniques, namely the space-time finite element

integration algorithm combined with the internal force computation dis-

cussed in Chapter III, have been implemented into a Fortran 77 software

package. The software was first verified by repeating planar examples re-

ported in Chapter IV using a fixed node reference. The formulation was

then tested on an analysis of a sheet of paper issuing from a rigid horizontal

guide into a uniform gravitational field and compared to results reported

in [118]. In work of [118], the nonlinear equations of motion of an elastica

that moves out of a horizontal guide at a constant velocity are shown to

depend on two parameters, namely a dimensionless weight-to-stiffness ratio

= rng_ / EI and a dimensionless velocity v = Vgx/mg. / EI. In these

expressions, m is the mass per unit area of the paper, g is the acceleration

of gravity, g is the length of the paper, EI the bending stiffness, and V the

constant velocity of the paper ejection. The analysis was performed with

# = 50 and v 2 = 100, 50, 20,10 corresponding to V = 92,65,41,20

in/sec respectively. The trajectories of the beam tip for the various deploy-

ment speeds are shown in Figure 5.6 and compared to the static shape of a

fully extended cantilevered beam with given properties such that # = 50.

The results are comparable to those reported in [18]. Figure 5.7 gives an

animated history of the beam deformations throughout various stages of

the deployment. The deformation shapes are again compared to the static

shape.



179

! I I I I I I I I

II /

;>/

.

/

: /

- /
2

: t

//
//
/,

/:

:l!
:ew
:ll

:f£ ,"

:le ..

fs:

II

>,

II

>

""'"".., II

",.

e,.
o

i I i I t I I I i

cr_

O

0@

t'-

0

0

!

!

>

el2

C_
U}

0

o
t-i

f-4

i-I

0

u_

5-1



180

II

A

0

0
°_

0

°_

0



181

5.6 Concluding Remarks

An effective computational method has been developed for the mod-

eling of beam deployment which retains the advantages of the present beam

formulation. A deforming spatial grid has been introduced to model the

changing spatial volume. Due to the changing spatial reference for the

dynamic variables, the inertia operator acquires terms representing the con-

vective rate of change of the variable in addition to those representing the

local rate of change of the variable. A variational formulation is presented

in Hamiltonian form to simplify the numerical treatment of the inertia op-

erator. A space-time discretization of the Hamiltonian formulation is im-

plemented which accurately accounts for the deforming spatial grid in the

transient integration scheme. Reduced integration techniques were used to

analyze the required integrations over both the space and time domains;

a discrete Fourier analysis concluded that this discretization resulted in a

consistent approximation to the governing partial differential equations of

motion. To effect the moving node formulation within the present internal

force computational procedure, the solutions of a past configuration are ap-

propriately extrapolated to the grid representing the current configuration.

The results obtained from the present computational procedure agree with

those reported in [118].

The next chapter summarizes the work presented in this disserta-

tion.





CHAPTER VI

CONCLUSIONS

6.1 Summary, of Work

The present thesis work has focused on the dynamic analysis of

three-dimensional elastic beams which experience large rotational and large

deformational motions. A realistic mathematical model of a spatial flexible

beam was developed as an integral kernel of a general multibody dynam-

ics methodology. The model accounts for both large rotations and large

deformations as typically experienced by a flexible component within an ar-

ticulated structure. Computational solution techniques were then derived

and implemented which enhance and exploit various features inherent in the

formulation. The resulting methodology provides a tool to study the effects

of component flexibility on the performance of multibody systems.

To model the spatial dynamics of highly flexible beams, the beam

motion is described using an inertial reference for the translational displace-

ments and a body-fixed reference for the rotational quantities. Finite strain

rod theories are then defined in conjunction with the beam kinematic de-

scription. The resulting strain measures account for the effects of stretching,

bending, torsion, and transverse shear deformations, and thus model poten-

tial deformations of typically lightweight and highly flexible space structure

appendages. In addition, due to the kinematic description of the beam mo-

tion, the form of the equations of motion are similar to that of rigid body

dynamics. As such, these equations can be solved with numerical solution

procedures developed for general multibody dynamic systems. Another ad-

1 .-)
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vantage of the present formalism is the use of a convected coordinate rep-

resentation of the Cauchy stress tensor and a conjugate strain definition to

model the beam deformation. This is in contrast to many finite-deformation

analysis which typically adopt the Piola-Kirchoff stress tensor to model the

deformation. As such, the stress/strain representation of the present formu-

lation coincides with the actual strains measured by sensors rotating with

and operating on the deformed structure. An easy interface is thus possi-

ble with control-type applications such as vibration suppression and slewing

maneuvers.

The numerical treatment of the beam formalism is considered in de-

tail in the present thesis. A computational procedure for the internal force

has been derived from the continuum formulation. As the formulation is

based on an inertial reference for the beam dynamics, the degrees of free-

dom of the flexible component contain information of both rigid and flexible

deformation motions without distinction. The rigid motions must not in-

fluence the strain computation. To this end, a unique computation which

exploits characteristics of the strain formulation as well as finite rotation

theory was derived to filter out the rigid body motions embedded within

the degrees of freedom. The procedure was proven to remain invariant to

arbitrary finite rigid rotations of the beam while accurately modeling the

beam strain.

The present internal force computation was successfully interfaced

with multibody dynamic solution procedures. As a consequence of the

present beam formulation, the structure of the equations of motion is iden-

tical for both rigid and flexible components of an arbitrary multibody con-

figuration. The following numerical solution procedures, which have been



184

developed and successfully implemented in the present work, are thus appli-

cable for both the rigid and flexible components of the articulated structure.

An interlaced application of the central difference algorithm is used to inte-

grate the translational coordinates and the angular velocity vector. Given

the solution for the angular velocity, an implicit algorithm is used to dis-

cretize the Euler parameter/angular velocity kinematical relation to obtain

the corresponding angular orientation. The constraint conditions, which

are augmented to the formulation via Lagrange multipliers, are enforced via

a separate procedure which implicitly integrates an alternative stabilized

companion differential equation for the Lagrange multipliers. The numeri-

cal techniques were originally tested on multirigid body systems and then

successfully extended to models incorporating the present beam formula-

tion. The combined developments of the objective internal force compu-

tation with the dynamic solution procedures result in the computational

preservation of total energy for undamped systems. This distinct feature

has been demonstrated in several examples.

The final development presented in this thesis is the modeling of

the dynamics of deployment/retrieval of the beam formulation. To model

the deployment, a moving spatial grid is employed as a reference for the

dynamic variables. This reference corresponds to the configuration of a

deployed beam as if it were rigid. The introduction of this moving spatial

reference leads to complexities in the beam inertia operator. For this reason,

a Hamiltonian variational formulation is employed to simplify the numeri-

cal treatment of the inertia operator. Space-time finite elements are used

to discretize the Hamiltonian formulation, resulting in a transient integra-

tion scheme which accurately accounts for the deforming spatial grid. The
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methodology is successfullyinterfacedwith the internal forcecomputational

formalism, thus retaining the large rotation/large deformation modeling ca-

pabilities of the presentwork.

The major contributions of this work are summarizedasfollows:

a) A formulation for the spatial motion of flexible beamshasbeen de-

veloped basedon physically applicable strain definitions represen-

tative of thosemeasuredfrom actual sensorslocated and operating

on a rotating flexible structure.

b) A numerical procedure for the accurate computation of the inter-

nal force has been developedfrom the continuum formulation and

proven to be invariant to arbitrary rigid motions of the beam.

c) Multibody dynamic solution procedures have been developedand

applied to modelsof articulated structures incorporating the present

beam formulation.

d) The dynamicsof deployment/retrieval havebeenmodeled by incor-

porating a moving node referencefor the present beam formulation

and a space-time discretization of the corresponding Hamiltonian

variational statement:

e) The computational proceduresdeveloped to simulate the dynam-

ics of multibody systemswith flexible beam componentshave been

implemented into a software testbed, providing a mechanism for

dynamic analysisof spacestructures, robot assemblies,and similar

applications.

6.2 Directions for Further Research

Accurate numerical simulations of flexible multibody systems can
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be utilized to facilitate interdisciplinary research. The techniques used in

designing control schemes for robotic type applications can be enhanced

with this simulation capability. As the implementation of a maneuvering

strategy developed from rigid models is not guaranteed to be successful, it

is important to determine to what extent the flexibility affects the robot

performance.

A potential application for this type of simulation capability is the

in-,pace construction facility being developed for the construction, main-

tenance, and repair of future massive space structures. The main body

of the crane is designed to carry the structural components to be assem-

bled. A mobile transporter which controls an attached remote manipulator

system moves along the crane arm to provide fine positioning and delicate

readjustment tasks required of the assembly process. Limited numerical ex-

periments which have been performed on flexible models of the space crane

suggest that the development of control strategies and maneuvering speeds

need be further addressed, and the effect of flexibility on the tip positioning

accuracy need be determined. Control strategies that work when the sys-

tem configurations change in a manner effecting rapidly varying frequency

responses must be developed for the successful operation of the space crane.

To effect on-board adaptive control strategies, real-time software

simulation capabilities must also be developed. To this end, parallel algo-

rithms that address the highly nonlinear equilibrium equations augmented

with complex kinematic and control constraints must be derived and imple-

mented within current multi-processor technologies.

In addition to applications involving robotics and control, another

area of research is the prediction of conditions which lead the present beam
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model to unstable motion. The influence of the deployment of flexible ap-

pendageson the spacecraft attitude stability may be parameterized in terms

of the deployment velocity and the orbital angular velocity. In addition, it

should be explored whether the present computational procedure can pre-

dict the onset of chaotic motion within the nonlinear beam model due to

a change in certain input conditions. In general, the present flexible beam

computational methodology provides a tool for further analysis of many

engineering operations.
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APPENDIX A

It is desired to obtain an expression for the variational operator

_]2 _ D r D _r,SF_ = p _ dv dt (A.1)
(t) Dt Dt

corresponding to the inertial operator of the Hamiltonian formulation° The

velocity of a material particle was given in (5.2.15) as

DrDt-- eT[ + 6) + V*Oeu +

where V* is the neutral-axis or _ component of the instantaneous velocity

of a spatial point as defined in (5.2.8). The virtual displacements gr are

defined as a set of infinitesimally small displacements of purely kinematic

nature that are consistent with the system constraints at a given instant

of time. Therefore, for the deployment problem 6r is defined for a specific

instant of the moving reference where X is held fixed and the definition

(2.2.10c)

6r = 6uTe A- _.T_&Tb

remains valid. The following expression is thus obtained

DDt6r - e T [ 6u -b V* OeO---_ ]6u -b

bT [ OiS(x V * c36(_ V* ]Ot + &6& + 0-"-_ + _6&

by applying the material time derivative operator (5.2.7) including the rotat-

ing coordinate transformations (5.2.13 - 5.2.14) to the virtual displacement
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definition. With this information, (A.1) can now be evaluated as

( _r + _ ) + V* 0u T 0_u V* 0_u

(t) + i,) + v* OU T V*+
Ot + O_ } dv dt

where the well known expressions

06a

&

0 6a

have been introduced. The above is integrated throughout constant cross-

sectional area coordinates represented by g. Typically, the last two terms

of the above expression which are linear in £ vanish as an integration is

performed over symmetrical cross-sections. In this case however, V* is also

a function of

V* = A* + O,r_

as derived in (5.2.12), and additional terms are generated. The final expres-

sion is given as

( f" + i, ) + i,* Ou T O_u

• • OU T O_U

+

+

+



where

06u T l:t T k _* + 06----._uT R T _ _,* +
ot O_

06U T p T _ 2 i_* _* +

o_

( V + i_ )T RT ( 0 6_ _*o_ + _ 6_ ) +

0u T R T 0 55 e*

0_ (--_ + _6_) +

O_uT Pt, T 0 6_ zt* _*
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m = /A pdA , J = Diag{Ji, J2, J3 } = /A p[[.TdA

represents the beam mass per unit length and cross-sectional inertia prop-

erties and

_* = {0, O_J2, O_J3 }T

In the same manner, the boundary term is evaluated as

{(¢+_*)

out 1:_ T 6_.*

o_

+ _, 0_t }T 03Tm6u + { +

tt

it* t_ T } J 6 o_ +

It is seen that the convective velocity V* gives rise to a slight coupling

between the translational and rotational degrees of freedom. For the present

analysis, we will neglect the effect of O.r _ within the convective velocity

_



APPENDIX B

The space-time discretization of the inertia operator within Hamil-

ton's Law was given in (5.4.4) as

[All6F ix = { 5utt _ut2 } A21

for the interior term and

*Fb_ = { _u', _,', } {

)u'*ut2

[B1 0 /Lt2 } +

I
was given in (5.4.7) for the boundary term. In the above terms, the A, B,

and C matrices have been derived using both full and reduced integration

techniques in analyzing the integrations of the changing spatial domain and

the arbitrary time interval inherent in the formulation. The results are given

below in terms of individual spatial finite element kernels to be assembled

across the spatial domain via the manner standard of finite elements.

The A matrices are given explicitly as

1

All = _M1 -- M S + hl*/_f3

1M1 + M A + h2* M3
A12 - h

1 A r .

A21 "- -_M1 -F M_ + h 2 M3

1

A22 = _M1 + M2s + hi*M3
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The spatial element kernels as derived from reduced integration techniques

are given as

.1 1] 0]4 1 1 ' M2s - PA--2 - 1

1] ,]M2 A = pA--_-- 1 0 , M3 - £ ua - 1

where

a

(_1" -_" U2* )

2

is the average nodal velocity _2" for a given element. The same kernels

integrated exactly are given as

M1- pA£[26 1 21]

r _-_. 2.. _,"
M2 S _ p A 1-3. 1 - _u2 z

4 L -_- _ 2"*- 3 _uz

M2 A - pA--_- 1

Ms - pA ..2[ 1 -1]t. Ua -1 1

• s

3

4 • •
+ _u2

Finally, the factors

1 1
h_ = - ,3

1 1
hl = - ,6

correspond to the exact vs. reduced integration analysis respectively. With

this information, the difference equations (5.4.14) and (5.4.15) to be ana-

lyzed with the discrete Fourier procedure are easily derived.

Likewise, the spatial kernels of the boundary term are defined as

B1

B2 -"

B ( -e" ) , C, = C ( a* ) , C= = C ( T_j Vj )

B ( e t2 ) + AUl t2 Tll O AUl t2 Tll D 0

Alt2 t2 Tll D B ( e t2 ) q- Au2 t2 T12 D 0

A0 t2 T_ D A0 t2 TI2 D B ( et_ )



where

Au i

and the matrices are defined as

_i2 -- Uil

t
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B= pAg[14 1 11]

_: [-1C = pA--_-- -1

D = 4 1 1

for the reduced integration evaluation and

B

C -

D =

6 1 2

p A [ -2_ T - u_

6 [ -ti_ - 2u]

g 1 2

for the exact integration evaluation.

1

2_ + u_ ]

_; + 2_; J






